

OSYSTEMS FOR AUTOMOTIVE APPLICATIONS

Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving assistance applications on smart mobile devices

Razvan Itu, Radu Danescu

Technical University of Cluj-Napoca, Romania Image Processing and Pattern Recognition Research Center

12.09.2018

Objectives

- **Estimation of the camera position and orientation with respect to a host vehicle reference frame, with no interaction from the user.**
- **The system should work in the absence of road markings, or when these markings are not visible (crowded city traffic).**
- **The detection of the calibration landmarks should be independent on preliminary extrinsic camera calibration.**

The calibration problem

- **Classical camera calibration uses the known correspondence between measured 3D coordinates and their position in the image.**
	- **Requires a controlled, artificial environment.**
- **Automatic calibration of real scenes is mostly based on vanishing points [Caprile, 1990].**
- **The vanishing points are detected using multiple voting techniques, such as the Gaussian sphere voting [Magee, 1984] or RANSAC techniques [Bazin, 2012], or based on CNNs [Itu, 2017].**
- **These techniques require structured scenes, with straight parallel and perpendicular lines ("Mahnattan World" assumption).**
- **Additiona sensors can be used for automatic calibration [Bileschi, 2009], [Levinson, 2013].**

Camera model

• **The camera and the vehicle (world) coordinate systems:**

Camera model

- **Projection of a 3D world point in the image space:**
	- *u* **– column coordinate relative to top left corner of the image**
	- *v* **– row coordinate relative to top left corner of the image**

$$
\begin{pmatrix} u_s \\ v_s \\ s \end{pmatrix} = \mathbf{P} \begin{pmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{pmatrix}
$$

$$
\mathbf{P} = \mathbf{A}[\mathbf{R}_{WC} \mathbf{T}_{WC}] \qquad \mathbf{A} = \begin{pmatrix} f & 0 & W/2 \\ 0 & f & H/2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{T}_{WC} = -\mathbf{R}_{WC} \mathbf{T}_{CW}
$$

Estimation problem statement

- **We consider the height of the camera and pitch angle to be the unknown state vector X to be estimated.**
- **The measurement vector will be composed of two image space widths of a known 3D structure in the road plane, for given image rows.**
	- **The known 3D structures can be lanes (or any painted structure on the road, of standard size), or vehicles.**

Estimation using EKF

- **The state vector is initialized with default values (0 degrees for pitch, any value for height).**
- **At any iteration, we assume that we have the image widths w1 and w2 of a 3D object of known size, for two row coordinates, v1 and v2.**
- **The following steps are performed:**
	- **Prediction of the measurement vector, using the projection equations, the known object size** *L***, the given image lines and the camera intrinsic parameters**

$$
Z'_{k} = g_{\nu 1, \nu 2, L}(X_{k})
$$

- **Computation of the Jacobian of the transformation, Mk**
- **Computation of the Kalman gain:**

$$
K_k = P_k M^T (M_k P_k M_k^T + R)^{-1}
$$

– **Computation of the updated state vector**

$$
X_k = X_{k-1} + K_k(Z - Z'_k)
$$

Measurement data

- **Vehicles are detected using the MobileNet CNN architecture.**
- **The network was trained on the KITTI and the Udacity datasets, for detecting passenger cars.**
	- **Completeness of the detection of obstacles is not of concern at this point. The detection results should be only useful for calibration.**

Measurement data

- **The MobileNet CNN architecture: single shot detector featuring a reduced number of parameters.**
- **The normal convolution operation is replaced by depthwise convolution followed by pointwise convolution.**
- **Training is done on a desktop machine using gradient descent and two loss functions: one for detection and one for classification (smoothed L1 and weighted sigmoid loss).**
- **The network input represents images resized to 300x300 px.**
- **The output of the network is formed by bounding boxes representing the location of passenger cars.**

Measurement data

- **Car width versus image line (bottom line of the detected vehicle, the point of contact with the road), for a sequence of 8 minutes of driving:**
- **RANSAC is used to fit a line to the data, and two point on the line are used as measurement vector for the EKF.**

Estimation results

• **Height and pitch angle converge in 4-5 iterations**

– **Height ground truth 1.25 m, pitch ground truth unknown, but must match the vanishing point in the image**

Estimation results

- **Checking the results via the projected horizon line and the Inverse Perspective Mapping:**
	- **Horizon line matches the real horizon.**
	- **The IPM image shows parallel lane markings, and a lane width of 3.25 m (Ground truth, 3.20 m).**

Yaw angle estimation

- **Yaw (heading) angle was assumed to be zero, but from the IPM image it can be seen that the assumption was wrong.**
- **The yaw angle is related to the** *u* **position of the vanishing point – the end point of the forward going vehicles' trajectories.**

Yaw angle estimation

- **No tracking is performed. Instead, obstacles are paired in consecutive frames on simple position constraints.**
- **From one pair, a trajectory is constructed and a potential vanishing point is determined.**
- **The median position of the vanishing points'** *u* **coordinate is chosen.**

Yaw angle estimation

• **Yaw angle is computed from the vanishing point:**

$$
tan\Psi = \frac{u_0 - W/2}{f}
$$

• **The rotation matrix is re-computed taking the yaw into consideration:**

$$
R_{WC} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos\theta & -sin\theta \\ 0 & sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} cos\Psi & 0 & sin\Psi \\ 0 & 1 & 0 \\ -sin\Psi & 0 & cos\Psi \end{pmatrix}
$$

Yaw angle estimation result

• **The effect on the IPM transformation:**

Roll angle estimation

- **Roll: the angle of rotation around the optical axis (camera Z axis)**
- **Detection of the roll: histogram of oriented gradients on vehicles detected in a central position**
	- **Histograms from single frames are combined for the whole sequence**
- **As the vehicle's features are mostly vertical and horizontal, the histogram peaks around angles multiple of 90^o .**
- **The roll angle will cause the shift of the maxima:**

Results

- **Time performance:**
	- **Obstacle detection, 100ms / frame on a Samsung Galaxy S8+ phone**
	- **Calibration performed offline, after a longer sequence is acquired (5 minutes or more) of driving, less than 1 minute of processing**
- **Angle estimation performance:**
	- **Pitch and yaw angles are estimated correctly, with less than 0.1 degree of error**
	- **No ground truth (and very difficult to estimate the effect on IPM) for the roll angle, but simulated roll angles (artificial rotation of the image by a set angle) were detected with 0.2 degrees of precision**
- **Camera height estimation performance:**
	- **The camera height estimation is more sensitive, as sometimes we can have errors of more than 10 centimeters.**

Discussion

- **The cause of errors (especially on height) is simply that there are too few vehicles detected, and they lack diversity. Some scenarios:**
	- **A sequence may contain only one vehicle, in front of us, that we follow. If this vehicle is narrow, or wide, and does not fit the 1.75 m average width, the height estimation will fail.**
	- **Most of the detected vehicles are on the side of the road, and they will be detected as larger boxes in the image, including their side view.**
- **The solution for overcoming these problems:**
	- **Collect more data, with diverse obstacles in front of us.**
	- **Use a more complex classifier, which is able to give us more information about the detected vehicles (type of vehicle, orientation, etc).**

Conclusion and future work

- **Automatic estimation of the camera's extrinsic parameters with respect to the host vehicle's reference frame.**
- **The knowledge used for calibration is the result of a CNN-based vehicle detector, which does not require any sort of calibration**
- **The system does not require the presence of lane markings, but can use them with the same estimator**
- **Longer, more diverse sequences mean better results**
- **With small changes, the algorithm can be used for on-line refinement of the calibration results.**

THANK YOU

users.utcluj.ro/~rdanescu http://users.utcluj.ro/~razvanitu/ cv.utcluj.ro radu.danescu@cs.utcluj.ro razvan.itu@cs.utcluj.ro

