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Objectives 

• Estimation of the camera position and orientation with respect 
to a host vehicle reference frame, with no interaction from the 
user. 

• The system should work in the absence of road markings, or 
when these markings are not visible (crowded city traffic). 

• The detection of the calibration landmarks should be 
independent on preliminary extrinsic camera calibration. 

 



The calibration problem 

• Classical camera calibration uses the known correspondence between 
measured 3D coordinates and their position in the image. 

– Requires a controlled, artificial environment. 

• Automatic calibration of real scenes is mostly based on vanishing points 
[Caprile, 1990]. 

• The vanishing points are detected using multiple voting techniques, such as 
the Gaussian sphere voting [Magee, 1984] or RANSAC techniques [Bazin, 
2012], or based on CNNs [Itu, 2017]. 

• These techniques require structured scenes, with straight parallel and 
perpendicular lines (“Mahnattan World” assumption). 

• Additiona sensors can be used for automatic calibration [Bileschi, 2009], 
[Levinson, 2013]. 

 



Camera model 

• The camera and the vehicle (world) coordinate systems: 
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Camera model 

• Projection of a 3D world point in the image space: 
– u – column coordinate relative to top left corner of the image 

– v – row coordinate relative to top left corner of the image 
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Estimation problem statement 

• We consider the height of the camera and pitch angle to be the 
unknown state vector X to be estimated. 

• The measurement vector will be composed of two image space widths 
of a known 3D structure in the road plane, for given image rows. 
– The known 3D structures can be lanes (or any painted structure on the road, 

of standard size), or vehicles. 
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Estimation using EKF 

• The state vector is initialized with default values (0 degrees for pitch, any 
value for height). 

• At any iteration, we assume that we have the image widths w1 and w2 of a 
3D object of known size, for two row coordinates, v1 and v2. 

• The following steps are performed: 
– Prediction of the measurement vector, using the projection equations, the known object 

size L, the given image lines and the camera intrinsic parameters 

 

– Computation of the Jacobian of the transformation, Mk 

– Computation of the Kalman gain: 

 

 

– Computation of the updated state vector 
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Measurement data 

• Vehicles are detected using the MobileNet CNN architecture. 

• The network was trained on the KITTI and the Udacity datasets, for detecting 
passenger cars. 
– Completeness of the detection of obstacles is not of concern at this point. The detection 

results should be only useful for calibration. 

 

 



Measurement data 

• The MobileNet CNN architecture: single shot detector featuring a reduced 
number of parameters. 

• The normal convolution operation is replaced by depthwise convolution 
followed by pointwise convolution. 

• Training is done on a desktop machine using gradient descent and two loss 
functions: one for detection and one for classification (smoothed L1 and 
weighted sigmoid loss). 

• The network input represents images resized to 300x300 px. 

• The output of the network is formed by bounding boxes representing the 
location of passenger cars. 

 



Measurement data 

• Car width versus image line (bottom line of the detected vehicle, the point of contact 
with the road), for a sequence of 8 minutes of driving: 

• RANSAC is used to fit a line to the data, and two point on the line are used as 
measurement vector for the EKF. 

 

 



Estimation results 

• Height and pitch angle converge in 4-5 iterations 
– Height ground truth 1.25 m, pitch ground truth unknown, but must match the vanishing point in the image 

 

 



Estimation results 

• Checking the results via the projected horizon line and the Inverse 
Perspective Mapping: 
– Horizon line matches the real horizon. 

– The IPM image shows parallel lane markings, and a lane width of 3.25 m (Ground truth, 3.20 m). 

 

 



Yaw angle estimation 

• Yaw (heading) angle was assumed to be zero, but from the IPM image it can 
be seen that the assumption was wrong. 

• The yaw angle is related to the u position of the vanishing point – the end 
point of the forward going vehicles’ trajectories. 

 



Yaw angle estimation 

• No tracking is performed. Instead, obstacles are paired in consecutive frames on 
simple position constraints. 

• From one pair, a trajectory is constructed and a potential vanishing point is 
determined. 

• The median position of the vanishing points’ u coordinate is chosen. 

 



Yaw angle estimation 

• Yaw angle is computed from the vanishing point: 

 

 

 

• The rotation matrix is re-computed taking the yaw into consideration: 
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Yaw angle estimation result 

• The effect on the IPM transformation: 

 



Roll angle estimation 

• Roll: the angle of rotation around the optical axis (camera Z axis) 

• Detection of the roll: histogram of oriented gradients on vehicles detected in a central position 
– Histograms from single frames are combined for the whole sequence 

• As the vehicle’s features are mostly vertical and horizontal, the histogram peaks around angles 
multiple of 90o. 

• The roll angle will cause the shift of the maxima: 



Results 

• Time performance: 
– Obstacle detection, 100ms / frame on a Samsung Galaxy S8+ phone 

– Calibration performed offline, after a longer sequence is acquired (5 minutes or more) of driving, less 
than 1 minute of processing 

• Angle estimation performance: 
– Pitch and yaw angles are estimated correctly, with less than 0.1 degree of error 

– No ground truth (and very difficult to estimate the effect on IPM) for the roll angle, but simulated roll 
angles (artificial rotation of the image by a set angle) were detected with 0.2 degrees of precision 

• Camera height estimation performance: 
– The camera height estimation is more sensitive, as sometimes we can have errors of more than 10 

centimeters. 



Discussion 

• The cause of errors (especially on height) is simply that there are too few 
vehicles detected, and they lack diversity. Some scenarios: 
– A sequence may contain only one vehicle, in front of us, that we follow. If this vehicle is 

narrow, or wide, and does not fit the 1.75 m average width, the height estimation will fail. 

– Most of the detected vehicles are on the side of the road, and they will be detected as 
larger boxes in the image, including their side view.  

• The solution for overcoming these problems:  
– Collect more data, with diverse obstacles in front of us. 

– Use a more complex classifier, which is able to give us more information about the detected 
vehicles (type of vehicle, orientation, etc). 



Conclusion and future work 

• Automatic estimation of the camera’s extrinsic parameters with respect to the host 
vehicle’s reference frame. 

• The knowledge used for calibration is the result of a CNN-based vehicle detector, 
which does not require any sort of calibration 

• The system does not require the presence of lane markings, but can use them with 
the same estimator 

• Longer, more diverse sequences mean better results 

• With small changes, the algorithm can be used for on-line refinement of the 
calibration results. 
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