

AMAA 2013, Berlin, 17.06.2013

CHALLENGES OF THE PRODUCTION OF ELECTRIC POWERTRAINS FROM THE PERSPECTIVE OF A PREMIUM CARMAKER.

1	Motivation and History of Electrification at BMW
2	The new Brand BMW i and its Vehicles i3 and i8
3	The Electric Drive Components: E-Motor and High Voltage Battery
4	The Challenges of the Production of those Components
5	Summary

IN A CHANGING WORLD, E-MOBILITY IS AN INTERESTING APPROACH.

Environment Climate change its knock-on effects

Urbanisation

By 2030, over 60% of the world's population will live in cities

Customer Expectations Changing values

DRIVING FACTORS

Culture

Sustainable mobility as part of a modern urban lifestyle; taking social responsibility

Economics Dwindling resources, rising fossil fuel prices

Politics and Regulations CO₂ and fleet regulations,

import restrictions

BMW GROUP EFFICIENT DYNAMICS. THE ROAD TO EMISSION-FREE MOBILITY.

BMW EfficientDynamics

Optimizing:

- Efficiency
- Aerodynamics
- Lightweight
- Energy Management
- Road Resistance

ActiveHybrid

ActiveHybrid X6 ActiveHybrid 7 ActiveHybrid 5 Active Hybrid3

PEV / BMW i Plug-in Vehicles / i3 & i8

Hydrogen

FCEV Long Range ZEV Mobility

HISTORY OF ELECTRIFICATION AT BMW.

AMAA Berlin; Dr. Frank Möbius; BMW Group; 17.06.2013

COMPARISON OF CO₂ FLEET REDUCTIONS IN EUROPE. BMW HAS ALREADY ACHIEVED A GREAT DEAL. TOUGH TARGETS TO COME.

BMW Group ACEA

SHARE OF PHEV/BEV POWERTRAIN TECHNOLOGIES EUROPE IN 2020 – VERY DIFFERENT SCENARIOS.

CLASSIFICATION OF ELECTRIFIED VEHICLES.

ARCHITECTURE OF A PLUG IN HYBRID (PHEV).

ARCHITECTURE OF A PURE ELECTRIC VEHICLE (BEV).

1	Motivation and History of Electrification at BMW
2	The new Brand BMW i and its Vehicles i3 and i8
3	The Electric Drive Components: E-Motor and High Voltage Battery
4	The Challenges of the Production of those Components
5	Summary

BMW i IS A NEW VALUE PROPOSITION.

Unrivaled Experience

Striking Technology

Dynamic Performance

Aesthetic Design

Innovative Technologies

Visionary Mobility

Inspiring Design

Next Premium

RESPONSIVENESS FROM STANDSTILL.

Individual measurements for i3, M3 Coupé and 118dA compared.

PURE ELECTRIC DRIVING AT BMW: FROM THE MINI E TO THE BMW I3.

BMW i3 CONCEPT – SOME TECHNICAL DATA.

Vehicle	
Length	3,85m
Weight	1250kg
Driving Performance	
Performance	125kW/250Nm
Acceleration 0-100 km/h	7,9s
Maximum Speed	150 km/h
Range (NEDC)	225 km
Range (Costumer)	130 -160 km
Recharging	
Charging time (standard)	6h (100%)
Charging time (optional)	< 30 min (80%)

BMW i3: PRESS FEEDBACK. "This car is a revolution" (Auto Bild 1/3/2013).

Conclusion

The i3 does everything differently and much better. It is as quiet as a cat on the mantel, structurally strong as cast iron, tracks properly such as a rack railway and weighs without a battery even not 1000 kilograms. All this makes it an automotive revolution. "

ORTUNE

"The BMW i3 is a real BMW."

"Its (BMW i3) carbon fiber body is wrapped in layers of electronic services and smartphone apps designed to make life simpler and save time for the owner. "

"BMW's pioneering i3 electric car is one of the most exciting cars of 2013."

AMAA Berlin; Dr. Frank Möbius; BMW Group; 17.06.2013

BMW i3 CONCEPT – POWERTRAIN.

System output	125kW/250Nm
Electric range	Everyday range: 130-160 km / 80-100 miles FTP72 cycle: 225 km / 140 miles
Battery charge time	Standard: 6 h for 100 % Optional: <30min for 80 % charge

BMW i8 CONCEPT – SOME TECHNICAL DATA.

Vehicle	
Length	4,63m
Weight	1480kg
Driving Performance	
Performance (System)	260kW/550Nm
Performance (Otto)	164 kW/ 300Nm
Performance (electric)	96kW/ 250Nm
Acceleration 0-100 km/h	4,6s
Consumption	2,7l, 66g CO ₂
Range (electric)	35 km
Charging time	1:45h (100%)

BMW i8: PRESS FEEDBACK. "Captain Future" (Auto Zeitung 27/2/2013).

"... we now know that the BMW i8 is not only spectacularly futuristic in terms of appearance but also engagingly fast, eminently usable and comfortable enough to be used every day."

"The i8 with its performance of more than 350 hp can in icy curves be steered with four fingers. It drives manageable through the corners, with only slight oversteer. The track width, the favorable weight distribution by the two motors and the low center of gravity - thanks to the wide underlying battery - makes this possible."

Auto Express, 06Mar13

AUTOCAR

AMAA Berlin; Dr. Frank Möbius; BMW Group; 17.06.2013

"A mixture of Tesla

Porsche 911 - and

Roadster and

BMW i8 CONCEPT – POWERTRAIN.

System output	260 kW/ 550 Nm
Petrol engine	164 kW/ 300 Nm
Electric motor	96 kW/ 250 Nm
Electric range	approx. 35 km / 20 miles
Battery charge time	Standard: 1:45 h for 100 % charge

1	Motivation and History of Electrification at BMW
2	The new Brand BMW i and its Vehicles i3 and i8
3	The Electric Drive Components: E-Motor and High Voltage Battery
4	The Challenges of the Production of those Components
5	Summary

THE ELECTRIC MOTOR.

THE HIGH VOLTAGE BATTERY.

1	Motivation and History of Electrification at BMW
2	The new Brand BMW i and its Vehicles i3 and i8
3	The Electric Drive Components: E-Motor and High Voltage Battery
4	The Challenges of the Production of those Components
5	Summary

PRODUCTION STEPS OF THE ELECTRIC MOTOR.

CHALLENGES IN PRODUCTION OF ELECTRIC MOTORS FOR THE AUTOMOTIVE INDUSTRY.

- High output **flexibility** of the production system required in case of rapid variations in demand.
- Optimized manufacturing processes to improve efficiency and power/weight ratio:
 - Winding \rightarrow Slot filling factor.
 - Forming and connecting the winding head.
 - Minimize packaging space.
- Production-orientated design of **isolation concepts** in large series:
 Material of primary and secondary isolation, impregnation process, phase separation and –isolation.
- Reliable handling of **magnets**.
- Measurement and testing technologies: Standards and automation.

PRODUCTION STEPS OF THE HIGH VOLTAGE BATTERY.

CHALLENGES IN PRODUCTION OF HIGH VOLTAGE BATTERIES FOR THE AUTOMOTIVE INDUSTRY.

- No manufacturing of cells in Europe leads to a high effort in logistic and quality inspection before assembly.
- High output **flexibility** of the production system required in case of rapid variations in demand.
- New requirements of joining processes: transmission of high currents in welded joints, heat transfer and electrical isolation in adhesive layers, ...
- Automation of assembly procedures: screwing, mounting of contacts, handling of filigree cooling systems, ...
- **Safety** when using high voltage and technical cleanliness of manual assembly.
- Measurement and testing technologies: Standards und automation.

1	Motivation and History of Electrification at BMW
2	The new Brand BMW i and its Vehicles i3 and i8
3	The Electric Drive Components: E-Motor and High Voltage Battery
4	The Challenges of the Production of those Components
5	Summary

SUMMARY OF GENERAL CHALLENGES ON AUTOMOTIVE PRODUCTION FACING E-MOBILITY 1/3.

- Global increase of production capacities within all parts of the automotive industry expected (conventional <u>and</u> new drive technologies)
- Unpredictable volumes regarding e-mobility, depending on lots of volatile parameters (legislation, markets, customer acceptance, ...)
- High variety and change rate of design, variants and derivatives expected
- Flexibility, modularity, scalability of production necessary
- Strong competition between OEMs and suppliers \rightarrow "survival of the fittest"
- High **cost pressure**, especially on e-drive components and systems

SUMMARY OF GENERAL CHALLENGES ON AUTOMOTIVE PRODUCTION FACING E-MOBILITY 2/3.

- High speed of innovation necessary (battery cells,) to optimize power, energy, durability, efficiency, size, weight, cost
- New and rare qualifications of engineers and workers required
- Interdisciplinary work required (mechanical, electrical, process, chemical, software engineering + economics + business administration)
- Increase of automation to reach high quality, safety and cost efficiency \rightarrow depending on volumes!
- Manufacturing of **new and expensive materials**: high strength steel, light metals, fibre-reinforced plastics, ceramics, sandwich constructions, hybrid design, rare earth and complex material mixes

SUMMARY OF GENERAL CHALLENGES ON AUTOMOTIVE PRODUCTION FACING E-MOBILITY 3/3.

- New requirements on joining technologies necessary (hv electric current conduction, ...)
- Assembly of **highly integrated components** (e-motor and power electronics...)
- Dealing with high voltage within the production \rightarrow work safety!
- Demanding measuring and testing equipment
- High impact of energy efficiency and environmental restrictions
- Standardization of processes and tools (global versus local interests!)
- Cooperation and joined forces between OEMs, suppliers, engineering companies and research institutes needed

THANK YOU FOR YOUR ATTENTION.

