

CONTENTS

Introduction

2

3

EFI Sensor Design

Conclusion

5

Experimental results

Challenges & Benchmarking

Simulation results

Particulate Filter OBD Background

- Particulate emission is a worldwide concern
- Standard will require Particulate Filter OBD

EMBEDDED SMART MODULES
POWERTRAIN
DRIVETRAIN
ENERGY

PM₁₀ daily limit value exceedances in 2008

Particulate Filter OBD Background

 Today DPF leakage detection is performed through differential pressure sensor. This solution does not meet future standard due to poor sensitivity.

- There is a need for embedded DPF leakage sensor
 - Downstream DPF
 - High sensitivity

Particulate Filter OBD Challenges

- Robust to exhaust line environment
- No cross sensitivities (NH3,HC,H2S,SOx,H2O,NOx...)
- OBD OTL detection
 - Certification cycles (NEDC, WHTC, EUDC, FTP...)
 - Real drive conditions
 - IUPR standard
 - False detection and non detection performances

Technologies benchmarking

Resistive technology

Cumulative, soot impedance

Particle charge

Real time, soot particle charges

Detection filter

Cumulative, temperature or pressure change

Radio frequency

Real time, radio frequency transfer function

EFI Sensor key features - Hardware

Optimized heater

- Von Mises stress
- Thermal homogeneity
- heating efficiency

SCU

Electronic boost

- higher sensitivity
- response time

PM Sensor Development and Simulation for Diesel Particulate Filter On Board Diagnostic **Optimized tip** CLEERS Workshop 2013

- heat shield

- passband filter

High resolution pattern

- higher sensitivity

SOOT SENSOR FOR PARTICULATE FILTER OBD **JUNE 18th 2013**

EMBEDDED SMART MODULES POWERTRAIN DRIVETRAIN ENERGY

EFI Sensor key features - Software

- State of the art algorithm are model based
- EFI/IFPEN recommends a non model based approach
 - Classification method in a mapped calibrated xD space
- Referential: ECU + sensor signal

Patent deposit number 13/00.184.

- Benefit:
 - No model of engine out soot, DPF and sensor,
 - Reduced development time and cost
 - Less tolerance errors
 - Quicker diagnostic time

Simulation results

Artemis Motorway cycle

- Sensor signal
- Strategy Diagnostic

EMBEDDED SMART MODULES
POWERTRAIN
DRIVETRAIN
ENERGY

Simulation results

6 cycles 100K/runs	False alert rate (Nominal DPF) GOAL < 1 ppm	Non detection rate (Faulty DPF) GOAL < 100 ppm
Case 1 Soot dispersion 3 σ = 25 %	0	60 ppm
Case 2 Soot dispersion 3 σ = 35 %	0	75 ppm
Case 3 Soot dispersion 3 σ = 45 %	0	90 ppm

Experimental results – test set up

Test conditions: C4 norme €4 Exxotest recording

Protoype exhaust line in order to be instrumented (AVL 483 + Tc) and fit different faulty or not DPF

Experimental results – Calibration

Calibration of the strategy took place 2 weeks in august 2012 with a

combination of several circuits

4,6mg/km

7,6mg/km

96 runs 1015 km

Experimental results

Cumulated mass of soot (AVL483, mg)

Experimental results – test results

25s < Detection < 350s

Experimental results – test results

Number of regeneration events	FAP 3,1mg/km	DPF 7,7mg/km	No DPF
N =1	1	5,6%	0
N = 2	1	0,32%	0
N = 3	1	180ppm	0
N =4	1	10ppm	0

Conclusions

- A new approach for DPF OBD has been developped
 - Innovative sensing area, collecting tip and electronics
 - Non model base algorithm
- This approach has been validated on real driving conditions on a LV
- The high sensitivity of the sensor complies with the 12mg/km European OBD threshold limit (Euro 6.2 – 2017)
- Tests are ongoing to:
 - Assess durability and cross sensitivities
 - Evaluate DPF leakage value capability

SOOT SENSOR FOR PARTICULATE FILTER OBD **JUNE 18th 2013**

CONFIDENTIAL – © Electricfil – Reproduction & disclosure prohibited without express permission.

EMBEDDED SMART MODULES POWERTRAIN

DRIVETRAIN **ENERGY**