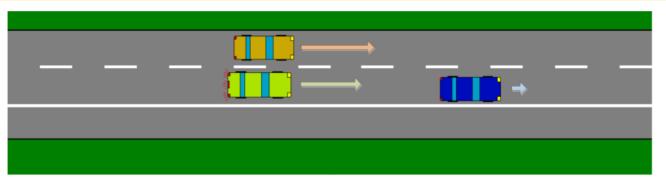

Vision Zero: Technologies and Limitations

AMAA 2013 Dr. Klaus Krumbiegel June 18th, 2013

Vision Zero

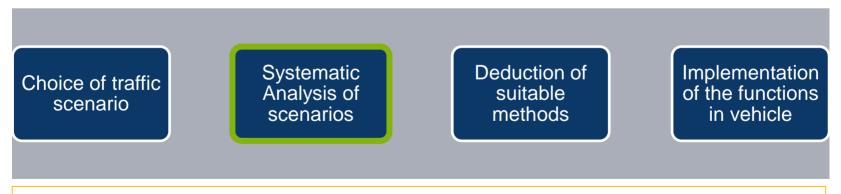


object of investigation

Is a Vehicle safety concept conceivable, such that Vision Zero can be implemented?

Boundary conditions

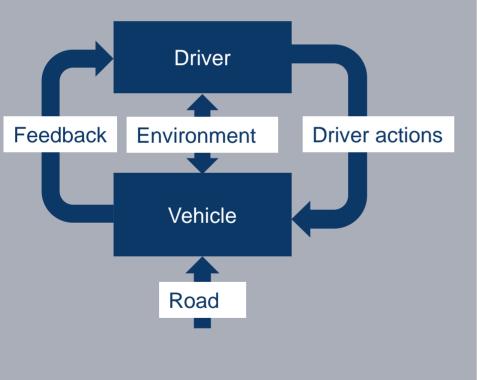
- Restriction to longitudinal traffic
- no wrong-way drivers, no pedestrians, no cyclists, no wild animals
- no extreme weather situations, no low friction coefficients
- deliberate violations of traffic rules are not considered



Procedure model Vision Zero

State of the art

required model



Goal: Systematic Avoidance of serious injuries and fatalities in traffic

Analysis of the situation (1)

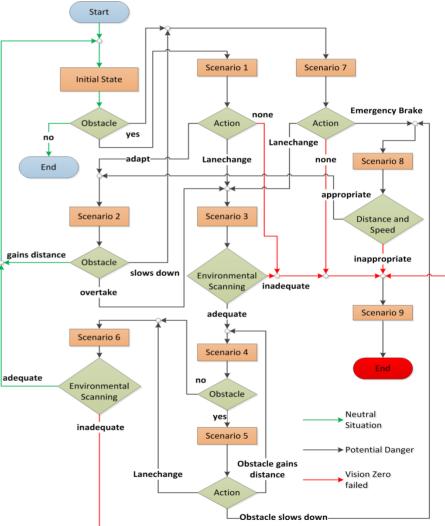
Vehicle as control loop

Different Scenarios

- Initial state free driving on right lane
- scenario 1 driving obstacle on right lane
- scenario 2 Following hindrance on right lane
- scenario 3 Lane change to the left
- scenario 4 free driving on left lane
- scenario 5 Following hindrance on left lane
- scenario 6 lane change to the right
- scenario 7 stationary object on the right lane
- scenario 8 emergency braking manoeuver

scenario 9 – collisio

Cancellation of scenario 9, since in case of a collision the fulfillment of Vision Zero cannot be guaranteed in any case


Analysis of the situation (2)

•

1.

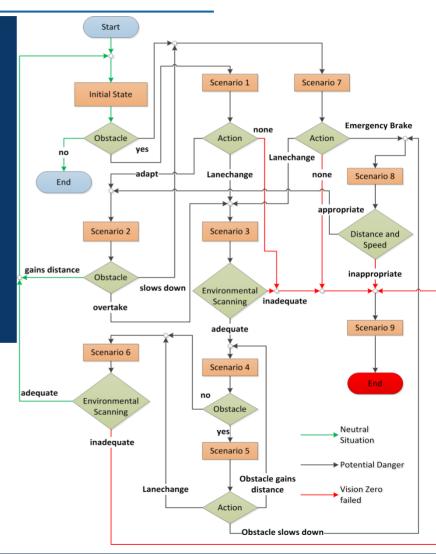
2.

Evaluation: State of the art

May current vehicles with all conceivable Driver assistance systems and active safety functions fulfill the Vision Zero? (Best-Case Evaluation!)

Function	Sufficient environmental scanning	Appropriate driving behavior
Adaptive Cruise Control	Range >250 mRange detection	 Not ensured in all cases (demand for takeover) Can be overruled by driver
Automatic emergency brake	Range >250 mRange detection	 Collision avoidance only in certain situations
Lane change assistant	 View field ahead is mostly not covered 	 Only indicative, can be ignored by driver
Lane keeping assistant	 Distinguishable driving lanes are required 	 Can be overruled by driver

Can the Vision Zero even be achieved in case of a fallible human driver?



Evaluation (4): Role of the human driver

Fulfillment of Vision Zero with human drivers

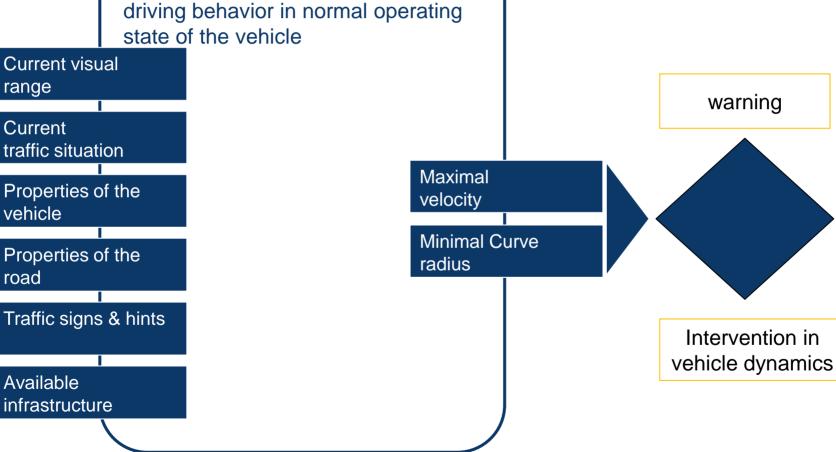
- comprehensive skills to interprete complex traffic situations
- wide spreading due to mastering of the driver job
 - different competence of the drivers
 - health status of the drivers
 - comprehensive realtime analysis of the current driving ability hardly possible
 - sudden occurrence of driving failures can never be excluded with 100 % certainty

Conclusion: without a high degree of automation in the vehicles the Vision Zero seems hardly realizable!

- the degree of automation in vehicles has to be increased
- implementation of on-board diagnosis systems for ambient environment sensor data in realtime
- detection of all obstacles in the visual range of the respective sensors
- determination of relevant parameters affecting driving dynamics in real time (current friction coefficient)
- determination and automatic realization of appropriate driving behavior

Properties of the vehicle

Outlook:


Appropriate driving

Algorithm determining appropriate

Properties of the road

Traffic signs & hints

Available infrastructure

Conclusion

- a systematic analysis of simple traffic situations leads to two main causes for accidents:
 - Insufficient environmental scanning and inappropriate driving behavior
- in most of the scenarios safety and driver assistance functions were already able to detect the hazardous situation
- but safety and driver assistance system can not compensate driving failures completely
- without a high degree of automation of the vehicles the fulfillment of Vision Zero seems unrealistic
- the determination and realization of an appropriate driving behavior is a key function for the achievement of Vision Zero in longitudinal traffic

Thank you for attention

Dr. Klaus Krumbiegel

IAV GmbH

Carnotstrasse 1, 10587 Berlin Telefon: +49 30-39978-8750

klaus.krumbiegel@iav.de

www.iav.com

Outline

- Vision Zero
- Object of investigation
- Procedure model
- Analysis of the situation
- Evaluation
- Conclusion & outlook

ref.: wikipedia.de