18th International Forum on Advanced Microsystems for Automotive Applications (AMAA 2014) Berlin, 24. June 2014

# Reliability of New SiC BJT Power Modules for Fully Electric Vehicles

<u>Alexander Otto<sup>1</sup></u>, Eberhard Kaulfersch<sup>2</sup>, Klas Brinkfeldt<sup>3</sup>, Klaus Neumaier<sup>4</sup>, Olaf Zschieschang<sup>4</sup>, Dag Andersson<sup>3</sup>, Sven Rzepka<sup>1</sup>

alexander.otto@enas.fraunhofer.de

Micro Materials Center, Fraunhofer ENAS Technologie-Campus 3, 09126 Chemnitz, Germany <sup>1</sup>Fraunhofer ENAS <sup>2</sup>Nanotest und Design GmbH <sup>3</sup>Swerea IVF AB <sup>4</sup>Fairchild Semiconductor GmbH





#### **Project duration:** Oct'12 – Sep'15

## I. COSIVU project | Overview

#### **Project objectives:**

- Development of a novel electric drivetrain system architecture by realizing a smart, compact, and durable singlewheel drive unit including:
  - integrated electric motor 0
  - 2-stage gear system Ο
  - inverter with SiC based power Ο electronics
  - novel control and health-monitoring Ο system with wireless communication
  - advanced ultra-compact cooling 0 solution
- Validation platform: commercial vehicle (VOLVO) + passenger car (Elaphe)

Alexander Otto Page 2 Fraunhofer ENAS Micro Materials Center





II. SiC power module

III. Reliability

Power module in half-bridge configuration with full SiC components:

I. COSIVU project

- 4x SiC bipolar junction transistors (BJT) from FCS
- 4x SiC diodes from Cree
- 1200V, 50A (diode: 54A)
- Substrate: DCB with aluminum nitride (AIN) as ceramic isolator
- Lead-free solder; Alu wirebonds (E: 300µm, B: 150µm)
- Encapsulation: epoxy mold compound (EMC)

FCS SiC power module:

V. Next steps



Double-sided cooled SiC power module:



SiC bipolar junction transistor:



Alexander Otto Page 3 Fraunhofer ENAS Micro Materials Center





ENAS





Alexander Otto Page 4 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | General approach for reliability assessment of power module





## **III. Reliability** | FE simulation: Geometry model

#### FE simulation targets:

- Investigation of mechanical stress concentration and accumulating plastic and creep strain induces by:
  - Manufacturing process (soldering of DCB, transfer molding)
  - Internal and external thermal loads
- Replication of the corresponding physical effects



Alexander Otto Page 6 Fraunhofer ENAS Micro Materials Center





# **III. Reliability** | FE simulation: Geometry model



Alexander Otto Page 7 Fraunhofer ENAS Micro Materials Center







Alexander Otto Page 8 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | FE simulation: Calibration

Calibration result: Good compliance between warpage measurement and simulation



Simulation results:





Alexander Otto Page 9 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | FE simulation: First simulation results

#### FE simulation results:

- Quantifying of creep strains in the die attach of the SiC dies accumulated over the process steps and through thermal cycling already by global model
- Significant strains and stress can be observed in the die attach
- Results indicate that creep strain are primarily influenced by the high CTE mismatch between DCB and SiC dies
- Accumulating equivalent creep strain (=failure criterion) in die attach may lead to solder fatigue

Alexander Otto Page 10 Fraunhofer ENAS Micro Materials Center









1.50-002

1.40-002

1.30-002

1.20-002

1.10-002

1.00-002

9.00-003

8.00-003

7.00-003

6.00-003

5.00-003

4.00-003

3.00-003

2.00-003

1.00-003

1.50-002

1.40-002

1.30-002

1.20-002

1.10-002

1.00-002

9.00-003

8.00-003

7.00-003

6.00-003

5.00-003

4.00-003

3.00-003

2.00-003

1.00-003

# **III. Reliability** | FE simulation: First simulation results

#### FE simulation results:

- Monitoring of mechanical stress concentration and plastic deformation at the bond wires have been performed by using the local model
- Strain values are significant, but conclusions can only be made together with the testing results
- → Further investigations are needed





1.50-002 Equivalent plastic strain per cycle 1.40-002 1.30-002 1.20-002 1.10-002 1.00-002 9.00-003 8.00-003 7.00-003 6.00-003 5.00-003 4.00-003 3.00-003 2.00-003 1.00-003



Alexander Otto Page 11 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | Active power cycling: Test bench adaption

Starting point: Existing APC test bench dedicated to MOSFET / diode based power modules



Alexander Otto Page 12 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | Active power cycling: New sample holder design

#### For single-sided + double-sided cooling



V. Next steps



Alexander Otto Page 13 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | Active power cycling: Thermal analysis of cooling body

#### Thermal-fluid analysis of cooling body

- Simulation of single-sided cooling case
- Power modules replaced by simple heat sources (130W@50A/1,3V) with constant power
- Employment of steady-sate simulation
- Fluid flow rate is determined by the pump system curve



Pump curve of used thermostat (Level 4):



| Properties | of flow | body: |
|------------|---------|-------|
|------------|---------|-------|

|                                   | Chasis material<br>(Alu)  | Sealing material<br>(Noaflon 100) |
|-----------------------------------|---------------------------|-----------------------------------|
| Coeef. of thermal<br>conductivity | 313,0 W/mK                | 0,25 W/mK                         |
| Density                           | 19281,0 Kg/m <sup>3</sup> | 1700,0 Kg/m <sup>3</sup>          |
| Doeff. of spec.<br>heat           | 131 KJ/KgK                | 1300 KJ/KgK                       |

#### Properties of coolant (Silicon oil Kryo 51):

| Temaperature | kin. viscosity | dyn. viscosity | Density | Spec.<br>Heat Capacity |
|--------------|----------------|----------------|---------|------------------------|
| degC         | mm²/s          | kg/(m s)       | kg/m³   | KJ/(KgK)               |
|              |                |                |         |                        |
| 20           | 5              | 4.63E-03       | 925     | 1.61                   |
| 40           | 4.1            | 3.79E-03       | 905     | 1.65                   |
| 60           | 3.4            | 3.15E-03       | 895     | 1.68                   |
| 80           | 2.6            | 2.41E-03       | 875     | 1.71                   |
| 100          | 2              | 1.85E-03       | 865     | 1.73                   |

Alexander Otto Page 14 Fraunhofer ENAS Micro Materials Center





## **III. Reliability** | Active power cycling: Thermal analysis of cooling body

#### Simulation results:

- Temperature contour plot and iso-thermal indicates low temperature gradient among the heat sources
- Sources 2 6 are at the same max. temperature (within 1 k deviation)
- Source 1 and source 8 max temperatures are slightly below
- The max temperatures show a temperature rise above ambient of less then 25 K

#### Mid plane contour plots (top view):



V. Next steps

#### Top plane (heat sources) contour:



Alexander Otto Page 15 Fraunhofer ENAS Micro Materials Center





ENAS

### **III. Reliability** | Active power cycling: Connection plan



Alexander Otto Page 16 Fraunhofer ENAS Micro Materials Center





## **IV. Novel cooling concepts**

#### Investigation of double-sided cooling concept (<sup>2</sup>COOL) by Swerea IVF:

- Thermal computational fluid dynamics (CFD) analyses on simple inline pin-fin structure as well as on sponge-like structure
  - Coolant flow: 5 15 l/min; Temp.: 20°C Ο
  - Heat source: Single-sided scenario, Ο 30W each
  - Results: see picture on the right; higher Ο pressure drop for sponge-like structure

**Conclusion**: Further improvements needed in terms of reduced height and tilted sponge structure for better vertical mixing of coolant



Alexander Otto Page 17 Fraunhofer ENAS Micro Materials Center



# swerea



# V. Next steps in COSIVU (reliability work for SiC power module)

#### FE simulation:

- Simulation of active power cycles for single-sided power module
- Likewise, FE simulation for double-sided cooled power module
- Simulation at system level (inverter building block) with detailed sub-models of critical components (power module, current sensor, ...)

#### Active power Cycling:

- Test bench adaptation:
  - Sample holder: Thermal fluid analysis on double-sided cooling system
  - Connection plan / HW: i) Finalization ii) Fully galvanic decoupled constant current sources iii) Base driver
  - Adaption of LabVIEW control software
- Power cycling tests and failure analysis on single-sided and double-sided cooled power modules

Alexander Otto Page 18 Fraunhofer ENAS Micro Materials Center





## **Thank You for Your attention!**

Alexander Otto Page 19 Fraunhofer ENAS Micro Materials Center



