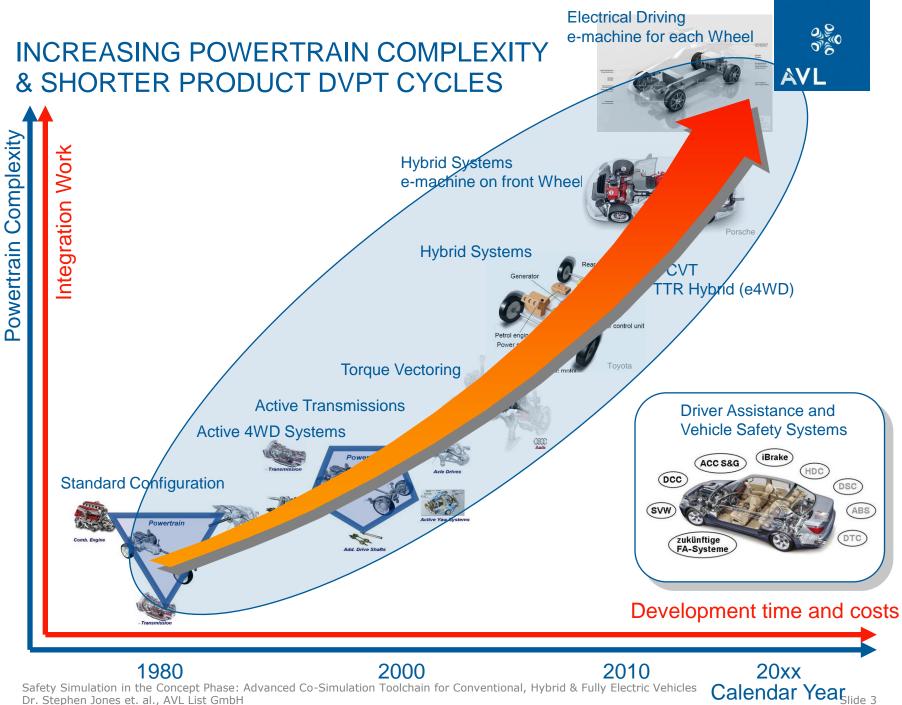
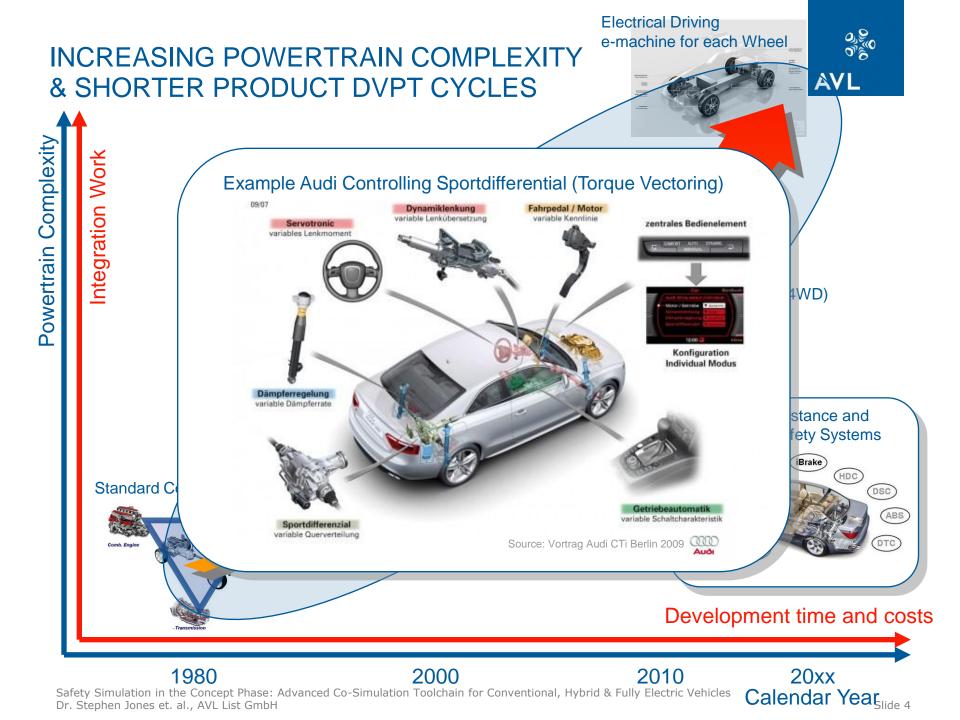

SAFETY SIMULATION IN THE CONCEPT PHASE: ADVANCED CO-SIMULATION TOOLCHAIN FOR CONVENTIONAL, HYBRID & FULLY ELECTRIC VEHICLES

18th International Forum on Advanced Microsystems for Automotive Applications Berlin, 23-24 June 2014





Introduction

- Methodology & Co-Simulation Toolchain
- Application Examples of Concept Safety Simulation:
 - Passenger Car / HD Truck with DCT Simultaneous Clutch Closure
 - Hybrid Electric Vehicles E-Machine Failure & Safety
 - EV with Multiple E-Machines E-Machine Failure & Safety
- Summary & Outlook

Dr. Stephen Jones et. al., AVL List GmbH

FUNCTIONAL SAFETY ANALYSIS VIA SYSTEM CO-SIMULATION

- ISO 26262, a Functional Safety standard of "Road vehicles -- Functional Safety", published in November 2011.
- Aims to address possible hazards caused by the malfunctioning behaviour of electronic and electrical systems, with a max. gross weight of 3500kg.
- □ Extension is planned to include heavy duty trucks (>3500kg).
- In AVL, virtual reality simulation is built up for safety simulation for ISO
 26262 and hazard severity rating in early concept phase.
- ❑ With such co-simulation techniques, incident severity & vehicle controllability following defined system failures can be virtually determined and *Automotive Safety Integrity Level* (ASIL) may be defined.

SAFETY - PROBLEM STATEMENT AVL ISO 26262 – ASIL OVERVIEW Controllability class Severity class Probability class Event C1 C2 C3 QM E1 QM QM QM QM E2 **S1** E3 QM QM E4 QM А E1 QM QM E2 QM QM Exposure **S2** E3 QM А E4 А в E1 QM QM E2 QM A **S**3 E3 А В E4 в С Severity 3 aspects in ASIL Controllability **Residual Risk Tolerable Risk Inherent Risk Necessary risk reduction** Actual risk reduction

SAFETY - PROBLEM STATEMENT ISO 26262 – ASIL – EXPOSURE & SEVERITY

For Exposure and Severity there are, to some extent, clear guidelines on how they can be evaluated:

		Class of probability of exposure in operational situations (see			e Table 2)
		E1	E2	E3	E4
Frequency of situation		Occurs less often that once a year for the gre majority of drivers	Occurs a few times a year for the great majority of drivers	Occurs once a month or more often for an average driver	Occurs during almost every drive on average
Examples	Road layout	_	 Mountain pass with unsecured steep slope 	_	_
	Road surface	_	 Snow and ice on road 	— Wet road	_
	Nearby elements	_	-	In tunnel In car wash Traffic congestion	_
	Vehicle stationary state	 Stopped, requiring engine restart (at railway crossing) Vehicle being tow Vehicle during jun start 	Noor fact attached	 Vehicle being refuelled Vehicle on a hill (hill hold) 	_
	Manoeuvre	_	 Evasive manoeuvre, deviating from desired path 	— Overtaking	 Starting from standstill Shifting transmission gears Accelerating Braking Executing a turn (steering) Using indicators Manoeuvring vehicle into parking position Driving in reverse

Exposure

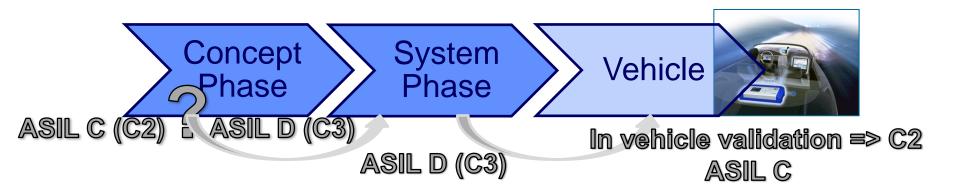
Severity

	Class of severity (see Table 1)							
		S0		\$1		S 2		S3
Reference for single injuries (from AIS scale)	_	AIS 0 and less than 10 % probability of AIS 1-6 Damage that cannot be classified safety-	prob	e than 10 % lability of AIS 1-6 I not S2 or S3)	prot	e than 10 % bability of AIS 3-6 1 not S3)		e than 10 % bability of AIS 5-6
		related						
Examples	_	Bumps with roadside infrastructure	_	Side impact with a narrow stationary object, e.g.	_	Side impact with a narrow stationary object, e.g.	_	Side impact with a narrow stationary object, e.g.
	_	Pushing over roadside post, fence, etc.		crashing into a tree (impact to passenger cell) with very low speed		crashing into a tree (impact to passenger cell) with low speed		crashing into a tree (impact to passenger cell) with medium
	—	Light collision						speed
	_	Light grazing damage		Side collision with a passenger car (e.g. intrudes upon	_	Side collision with a passenger car (e.g. intrudes		Side collision with a passenger car (e.g. intrudes
	_	Damage entering/ exiting parking space		passenger compartment) with very low speed		upon passenger compartment) with low speed		upon passenger compartment) with medium speed
		Leaving the road without collision or rollover	_	Rear/front collision with another passenger car with very low speed	_	Rear/front collision with another passenger car with low speed	_	Rear/front collision with another passenger car with medium
			_	Collision with minimal vehicle overlap (10 % to 20 %)				speed
					-	Pedestrian/bicycle accident while turning (city intersection and streets)	-	Pedestrian/bicycle accident (e.g. 2-lane road)
			_	Front collision (e.g. rear-ending another vehicle, semi-truck, etc.) without passenger compartment deformation				Front collision (e.g. rear-ending another vehicle, semi-truck, etc.) with passenger compartment deformation

SAFETY - PROBLEM STATEMENT ISO 26262 – ASIL – CONTROLLABILITY (1/2)

Controllability in ASIL:

- □ Controllability harder to assess. Especially with novel powertrains!
- For heavy duty vehicles, due to large architectural differences, controllability estimation becomes even more challenging.
- ISO 26262: "Controllability estimations can be influenced by a number of factors including the cultural background of the analyst, the target market for the vehicle, or driver profiles for the target market."
- Moreover: "As no controllability is assumed for category C3, it is not relevant to have appropriate evidence of the rationale for such a classification" => Everything that is not C3 must be justified ...


SAFETY - PROBLEM STATEMENT ISO 26262 – ASIL – CONTROLLABILITY (2/2)

Four Classes of Controllability

CO	C1	C2	C3
Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Most of the controllability assumptions can only be proven at the end of development cycle, on test track with a comprehensive measurement plan:

Introduction

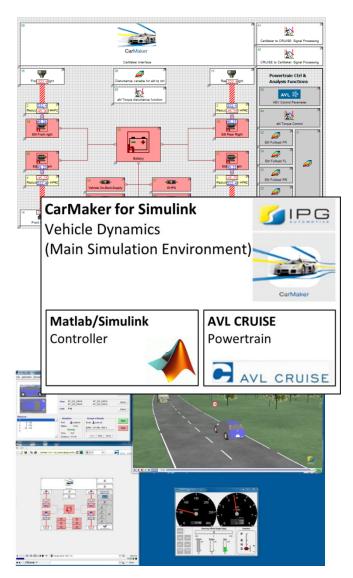
- Methodology & Co-Simulation Toolchain
- Application Examples of Concept Safety Simulation:
 - Passenger Car / HD Truck with DCT Simultaneous Clutch Closure
 - Hybrid Electric Vehicles E-Machine Failure & Safety
 - EV with Multiple E-Machines E-Machine Failure & Safety
- Summary & Outlook

We propose a methodology for **estimation of controllability** to support the argumentation in HRA based on:

- Simulate vehicle lateral and longitudinal dynamics for various driving conditions (wet road, icy road, high speed, curves, etc.).
- Induce different faults with respect to analyzed item (e.g. E-machine failure on electric vehicle).
- Model human driver category for simulation.
- Based on simulation results we observe human driver's ability to react when each hazardous situation occurs.

SYSTEM CO-SIMULATION TOOLCHAIN 1D POWERTRAIN & 3D VEHICLE DYNAMICS & CONTROL

Simulation Toolchain:


- ID Powertrain Model
- Vehicle Dynamics 3D Road & Driver
- Control System &
 Simulation Integration

Supporting Simulation Tools:

- DoE Optimization
- Road Data Handling
- Navigation Data
- E/E Architecture representation

CONCEPT SAFETY SIMULATION CO-SIMULATION TOOLCHAIN FOR LIGHT VEHICLES

Co-Simulation with AVL CRUISE, IPG CarMaker & Matlab Simulink

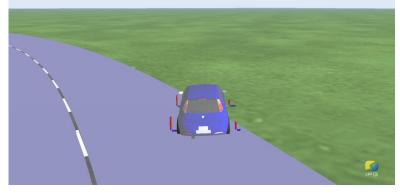
- ► CRUISE Powertrain
 - Powertrain model, conventional & electrified
 - Energy Management System
 - Energy Flow Diagrams
- ► CarMaker Vehicle Dynamics
 - > 3D vehicle dynamics
 - > 3D track model
 - > Traffic scenario
 - Ability to design complex driving manoeuvres in traffic scenarios
 - Interaction with traffic signs and other vehicles
 - Direct access to internal Cruise Data through CarMaker
- Matlab Simulink
 - Main simulation environment
 - Controller development
 - Post-processing environment

CONTENTS

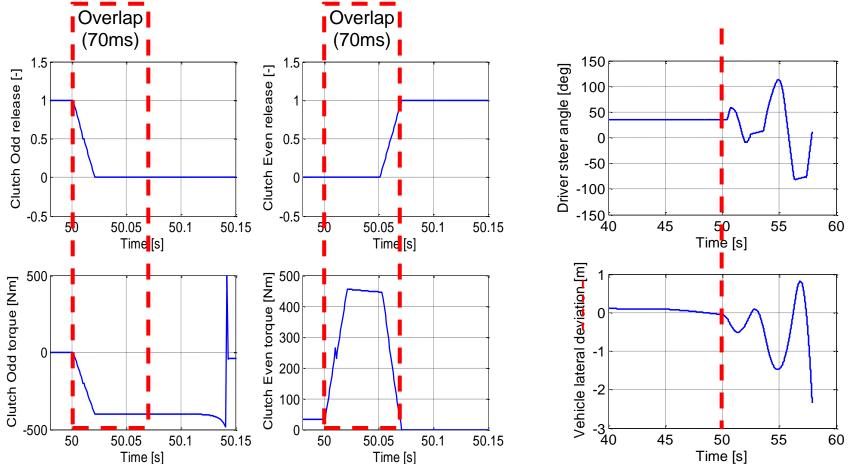
- Introduction
- Methodology & Co-Simulation Toolchain
- Application Examples of Concept Safety Simulation:
 - Passenger Car / HD Truck with DCT Simultaneous Clutch Closure
 - Hybrid Electric Vehicles E-Machine Failure & Safety
 - EV with Multiple E-Machines E-Machine Failure & Safety
- Summary & Outlook

DCT – SIMULTANEOUS CLUTCH CLOSURE ON WET ROAD PASSENGER CAR MOTION SNAPSHOTS

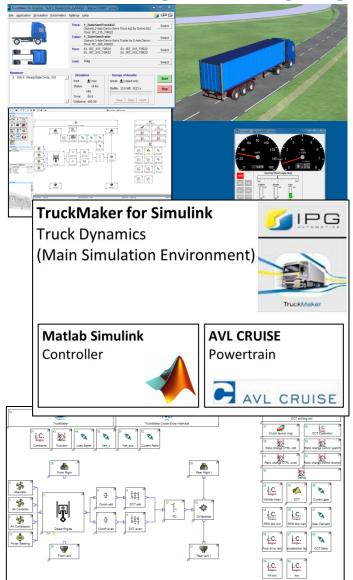
- Vehicle runs at speed of 70 km/h in a circle with radius of 100m
- Wet road surface with friction µ=0.4


1. DCT both clutches engaged

3. Vehicle diverts inwards



4. Vehicle runs out of track

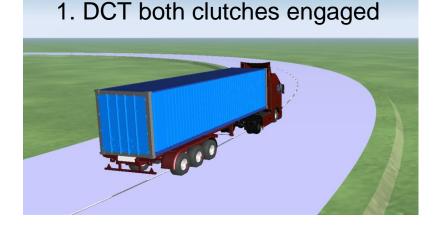

DCT – SIMULTANEOUS CLUTCH CLOSURE ON WET ROAD CRUISE POWERTRAIN CLUTCH SIGNALS

 Double clutch engagement of 70 ms overlap causes vehicle to laterally divert more than 2 m, and therefore could run into the path of an oncoming vehicle, or a road side obstacle → ISO26262 Hazard

• Human driver model tries to correct with large steering effort, without success

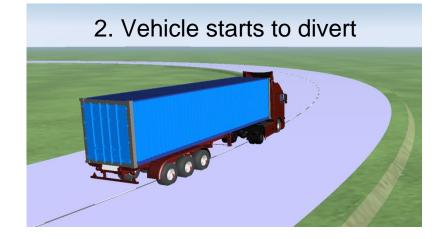
CO-SIMULATION TOOLCHAIN FOR HEAVY DUTY VEHICLES

Co-Simulation with AVL Cruise, TruckMaker & Matlab


►Cruise Powertrain

- Powertrain model with DCT
- DCT controller embedded in Cruise as Matlab DLL
- Energy Flow Diagrams
- TruckMaker for HD Vehicle Dynamics
 - > 3D truck dynamics
 - > 3D track model
 - > Traffic scenario
 - Ability to design complex driving manoeuvres in traffic scenarios
 - Interaction with traffic signs and other vehicles
 - Direct access to internal Cruise Data through TruckMaker
- Matlab Simulink
 - Controller development
 - Post-processing environment

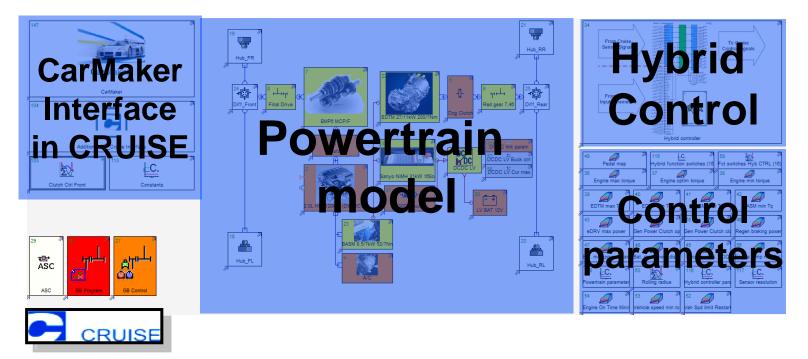
DCT – SIMULTANEOUS CLUTCH CLOSURE ON ICY ROAD HEAVY DUTY TRUCK MOTION SNAPSHOTS



- Vehicle runs at speed of 32 km/h in a circle with radius of 100m
- Icy road surface with low friction μ =0.1

3. Vehicle diverts outwards

4. Vehicle runs out of track



SAFETY SIMULATION: 4WD DIESEL HYBRID ELECTRIC PASSENGER CAR

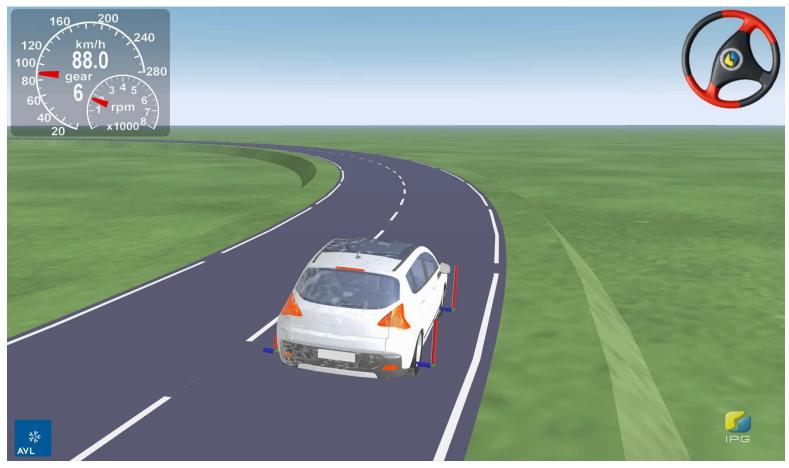
CRUISE model for CarMaker-CRUISE Co-Simulation:

- □ Front axle driven by ICE, while rear axle driven by electric machine.
- □ CRUISE model with Hybrid Controller is validated against measurements.
- □ CRUISE model adapted for co-simulation: CarMaker, CRUIS, Matlab Simulink.

SAFETY SIMULATION: 4WD DIESEL HYBRID ELECTRIC PASSENGER CAR

Dry road, Unintended full positive EM torque, Gentle driver braking

□ Two vehicles in video: Grey (normal, no failure), White (with failure)

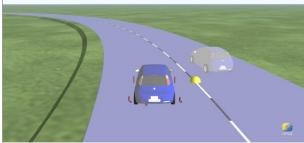


SAFETY SIMULATION: 4WD DIESEL HYBRID ELECTRIC PASSENGER CAR

Wet road, Unintended full negative EM torque, Harsh driver braking

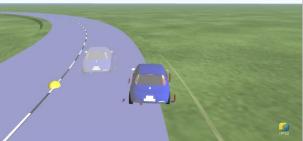
□ Two vehicles in video: Grey (normal, no failure), White (with failure)

EV WITH FOUR E-MACHINES E-MACHINE FAILURE & SAFETY PASSENGER CAR MOTION SNAPSHOTS

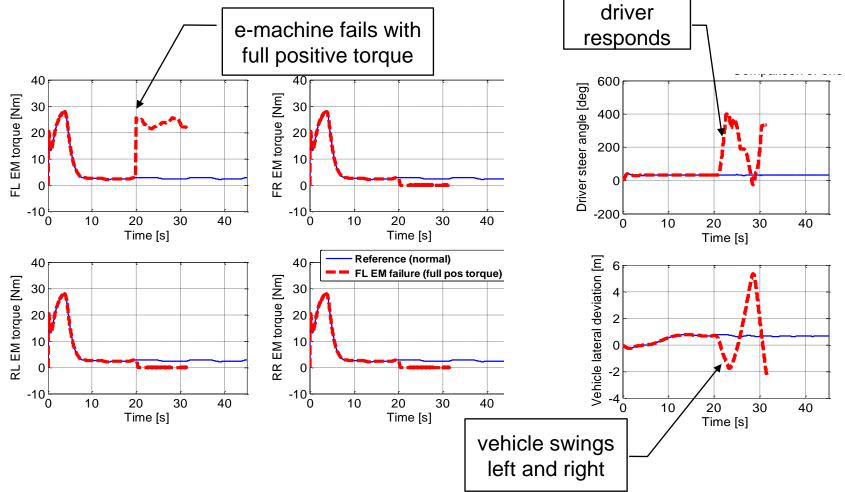

POLLUX

- EV, 800 kg, 4 e-machines with 12.5 kW each
- Single e-machine (front left) fails with full positive torque while running in a circle, speed=70 km/h, radius=110 m, wet asphalt road µ=0.4
- Two vehicles in snapshots:
 - Grey colour car:
 - Blue colour car:

Reference without EM failure With single EM failure

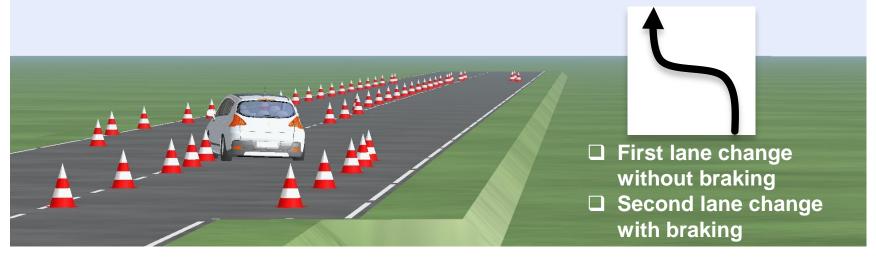


3. Vehicle diverts inwards



4. Vehicle runs out of track

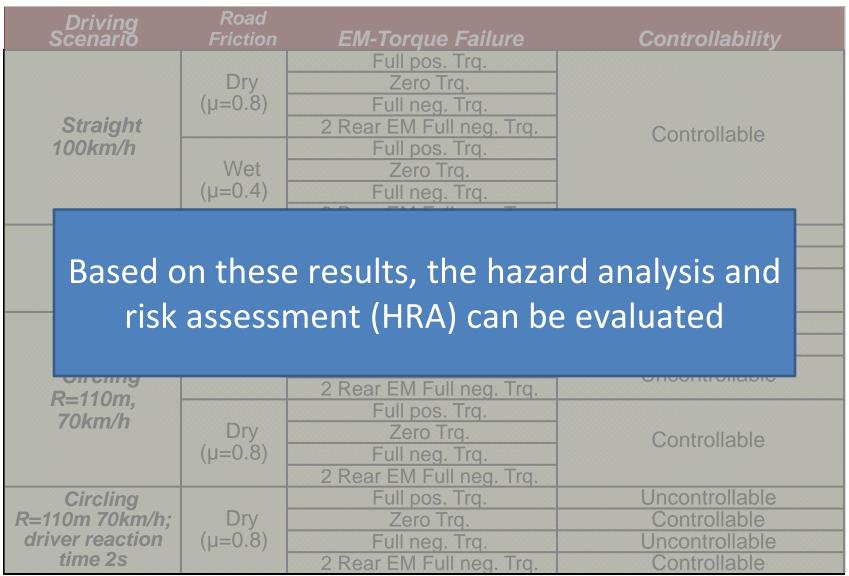
EV WITH MULTIPLE E-MACHINES E-MACHINE FAILURE & SAFETY PASSENGER CAR MOTION SIGNALS



OpEneR project: Co-Simulation Double Lane Change (DLC) Maneuver

- Double Lane Change (DLC): Standard maneuver for testing VDC, ABS & TCS.
- Main features of the ESP[®] hev system are virtually validated by the cosimulation tool-chain in a standard DLC maneuver.
- In OpEneR focus was virtual assessment interactions between electrical regeneration on both axles (efficiency) & Vehicle Dynamic Controllers (safety).

□ Easily extended to assess ASIL of system failure.


CONTROLLABILITY OUT OF SAFETY SIMULATION: EV CONTROLLABILITY MATRIX

Driving Scenario	Road Friction	EM-Torque Failure	Controllability	
	Dry (µ=0.8)	Full pos. Trq.	, ,	
		Zero Trq.		
		Full neg. Trq.		
Straight		2 Rear EM Full neg. Trq.	Controllable	
100km/h	Wet (µ=0.4)	Full pos. Trq.		
		Zero Trq.		
		Full neg. Trq.		
		2 Rear EM Full neg. Trq.		
Circling	Dry (µ=0.8)	Full pos. Trq.	Uncontrollable	
R=110m		Zero Trq.	Controllable	
		Full neg. Trq.	Uncontrollable	
100km/h		2 Rear EM Full neg. Trq.	Oncontrollable	
	Wet (µ=0.4)	Full pos. Trq.	Uncontrollable	
		Zero Trq.	Controllable	
Circling		Full neg. Trq.	Uncontrollable	
R=110m,		2 Rear EM Full neg. Trq.	Oncontrollable	
70km/h	Dry (µ=0.8)	Full pos. Trq.		
/ UKIII//I		Zero Trq.	Controllable	
		Full neg. Trq.		
		2 Rear EM Full neg. Trq.		
Circling	Dry (µ=0.8)	Full pos. Trq.	Uncontrollable	
R=110m 70km/h;		Zero Trq.	Controllable	
driver reaction		Full neg. Trq.	Uncontrollable	
time 2s		2 Rear EM Full neg. Trq.	Controllable	

CONTROLLABILITY OUT OF SAFETY SIMULATION: EV CONTROLLABILITY MATRIX

CONTENTS

- Introduction
- Methodology & Co-Simulation Toolchain
- Application Examples of Concept Safety Simulation:
 - Passenger Car / HD Truck with DCT Simultaneous Clutch Closure
 - Hybrid Electric Vehicles E-Machine Failure & Safety
 - EV with Multiple E-Machines E-Machine Failure & Safety

Summary & Outlook

SUMMARY & OUTLOOK

- Advanced 3D Vehicle / 1D Powertrain co-simulation toolchain proven for Conventional, Hybrid & Fully Electric Vehicles. For Cars, Heavy Duty Trucks & Buses.
- Virtual Functional Safety Analysis of vehicles in early development phase.
- Simulation supports improved Hazard Analysis & Risk
 Assessment by cross-functional expert system engineering team.
- Same co-simulation techniques may be used to develop & validate fault mitigation strategies e.g. failure detection functions, improved HW including sensors & communication networks.

Thank you for your kind attention!

AVL

TITL

Dr. Stephen Jones, stephen.jones@avl.com +43 316 787 4484