

Power Saving in Automotive Ethernet

Thomas Suermann, Steffen Müller

NXP Semiconductors

AMAA 2014

NXP – a global innovator

Established in 2006 (formerly a division of Royal Philips)

Net sales: \$4.8 billion in 2013, >60% in Asia

Employee base:

~ 25,000 employees in more than 25 countries Manufacturing in Asia and Europe

Strong Innovation Pipeline:

- R&D in Asia, Europe and US
- Over \$550M / year in R&D
- 3,200 engineers
- 11,000 patents

Global #1 Semiconductor Player in Security and Automotive Connectivity

Secure Connections for a Smarter World

Four Mega Trends are shaping our Society ...

and drive the Electronics Industry

Energy Efficiency, Connected Devices,

Security and Health

Connected Mobility

... enables communication between cars, people, infrastructure, inside the car

NXP Innovation in Automotive Ethernet

Automotive Ethernet Boundary Conditions

- Fast transition from sleep to communication (target: 250ms)
- Power consumption of a wake-able port very low (target: 10µA)
- No unintended wake-up due to EMC
- No change in MAC layer
- AUTOSAR network management possible
- Open standard, ready for future (e.g. Gigabit Ethernet)
- No additional hardware needed (keep costs)

Known Ethernet Low Power Approaches

WU signal

PHY

Supply

Processor

VBAT

Automotive Low Power with TJA1100

- Supply, Processor and MAC switched off
- PHY keeps partly alive via VBAT (clamp-30)
- Wake-up on link activity detection
- Power consumption in <0.5mW range

Low Power with standard PHYs

- Processor and MAC switched off
- PHY keeps supplied by dedicated regulator
- Wake-up on link activity detection
- Power consumption in 2mW range

1

MAC

SECURE CONNECTIONS

FOR A SMARTER WORLD

Wake-on-LAN (e.g. in PCs)

- Only Processor can be switched off
- PHY and MAC keeps supplied by regulator
- Wake-up on Magic Packet frame
- Power consumption in 1W range

7

NXP Ethernet Low Power Strategy

- Node / ECU level: all devices and part of PHY are switched off
 - PHY device is "self-supplied" device connected to battery voltage
 - Part of PHY device can be switched off but activity detector runs
 - Processor and MAC are completely switched off
 - No additional hardware needed, use existing network infrastructure
- Network level: new physical layer services
 - Link Sleep request & Link Sleep Fail indication
 - Wake-up request & Wake-up indication
 - Wake-up request forwarding (only Switch)

Link Sleep Request

Link Sleep Fail

Wake-up Request and Indication

Node is activeWUR = wakeup request, coded in "Idle Stream"Node in sleepWUP = wakeup pulse, triggered by bus acticity detector

Wake-up Request Forwarding

Node is active
Node in sleep

WUR = wakeup request, coded in "Idle Stream" WUP = wakeup pulse, triggered by bus acticity detector

Example Implementation

Conclusion

- Global wake-up via Ethernet fulfils all essential requirements
 - Minimum transition time sleep \rightarrow wake
 - Network and Switch device unchanged
 - PHY: sourced by 12V + bus activity detector + new services (WUR code)

Power consumption in network in quiescent state

- P = (# of PHY in network) x (PHY device quiescent power)
 - ... when remaining node functionality is completely switched off

Mechanism is well known and used in AUTOSAR

Power Saving is Vital for the Success of Automotive Ethernet

Secure Connections for a Smarter World

Thank you!

