Design of Real-time Transition from Driving Assistance to Automation: Bayesian Artificial Intelligence Approach

Ata M. Khan

Canada's Capital University

AMAA 2014

Berlin, Germany

Presentation structure

• Necessity of Cognitive Features in Driving Assistance System Design

Bayesian Artificial Intelligence

• Transition from Human Control to Automation

Conclusions

Technological Forecasts & How to Overcome Shared Authority Concerns

- Autonomous vehicles in the long term
- Driving assistance in the short term
- But, no clear definition of how to integrate human and technology factors in order to make human control and automation seamless
- Need to overcome shared authority concerns in increasing automation in driving

Driving Assistance Design Features Multifunctional advanced driver assistance system (ADASS) design

 \Box Open architecture & algorithms Natural interface of driver and automation features

- **Onterface with portable device**
- \square Sensor network for data capture
- \Box Integrated sensing for state estimation
- **L**Communication systems

Mechatronics/Microelectromechanicalsystems (MEMS) **⁵**

Role of Bayesian Artificial Intelligence (AI) AI:

"*Intelligence developed by humans, implemented as an artefact"*

Bayesian AI:

Algorithms that enable driving as well or in certain situations better than humans can (e.g. nondistracted non-aggressive driving) while adapting to stochastic and changing driving environment states.

Implementation Steps:

- Algorithm for driving missions.
- II. Compute expected gains/utilities
- Optimal course of action

High Level Architecture of Driver Assistance System's Advanced Safety Function On-line driving environment Driver response to avoid collision Choice of human control or automation Crash warning model assisted by driver action monitor (self calibration) Human control: optimal driver alerts • Safety surrogates of distance and time • Driving states with potential for rear or lateral crash No driver response. • Automation mode: Active safety action

Major functions of the crash warning system

Variables (Human Control)

- *d* distance between vehicles *dc* critical distance *s* reading on *d sc* corresponds to *d^c*
- *i0* do not wait, immediate action *iw* acquire and analyze additional data
	- *a0* no action
	- *aa* amber alert
	- a**r** red alert

Operation of Collision warning and Active Safety System

Comparison of distracted driving and automation

Optimal Courses of Action for Avoiding Rear Crashes and Transition to Automation

Optimal Courses of Action for Avoiding Lateral Crashes and Transition to Automation

Driving Environment and Optimal Actions under Automation

NOTES: a_0 is no action. a_E is emergency deceleration. a_N is normal speed change.

Driving Environment and Optimal Action under Automation

NOTES: a_0 is no action. a_N is normal speed change. a_H is high acceleration.

Conclusions

EX Importance of a well-designed transition

EX Research attention is drawn to the complexity of modeling the transition from human control to machine control under traffic states that involve high degrees of collision risk.

❖ Characterization of driving states that require real-time transition from driver-inthe loop to the automated function.

Conclusions (Continued)

❖ The Bayesian approach to meeting the requirements of the emergency transition has merits

 \triangle The example cases illustrate the integration of intelligent technology, Bayesian artificial intelligence, and abstracted human factors

Sponsors

 \Box Natural Sciences and Engineering Research Council of Canada (NSERC)

■ Ministry of Transportation, Ontario (MTO)