Design of Real-time Transition from Driving Assistance to Automation: Bayesian Artificial Intelligence Approach

Ata M. Khan

Canada's Capital University

AMAA 2014

Berlin, Germany

Presentation structure

 Necessity of Cognitive Features in Driving Assistance System Design

Bayesian Artificial Intelligence

Transition from Human Control to Automation
 Conclusions

Technological Forecasts & How to Overcome Shared Authority Concerns

- Autonomous vehicles in the long term
- Driving assistance in the short term
- But, no clear definition of how to integrate human and technology factors in order to make human control and automation seamless
- Need to overcome shared authority concerns in increasing automation in driving

Necessity of Cognitive Features in Driving Assistance System Design			
Cognitive vehicle features	Required for human control	Required for adaptive longitudinal & lateral control	
Situational awareness	Х	Х	
(position and surroundings)			
Gather, send & process data	Х	Х	
Cooperate/collaborate	Х	Х	
Communication for active			
safety		Х	
Warnings and advice	Х		
Diagnostic capability	Х	Х	
Crash situation: send and			
receive information	Х	Х	
□Non-distractive user interface	Х	Х	
Infotainment capability	*NA	*NA 4	

Driving Assistance Design Features Multifunctional advanced driver assistance system (ADASS) design

Open architecture & algorithms
 Natural interface of driver and automation features

- Interface with portable device
- Sensor network for data capture
- □Integrated sensing for state estimation
- Communication systems

Mechatronics/Microelectromechanical systems
(MEMS)

Role of Bayesian Artificial Intelligence (AI) Al:

"Intelligence developed by humans, implemented as an artefact"

Bayesian AI:

Algorithms that enable driving as well or in certain situations better than humans can (e.g. nondistracted non-aggressive driving) while adapting to stochastic and changing driving environment states.

Implementation Steps:

- I. Algorithm for driving missions.
- II. Compute expected gains/utilities
- III. Optimal course of action

Major functions of the crash warning system

Variables (Human Control)

- d distance between vehicles
 s reading on d

 dc critical distance
 sc corresponds to dc
- *io* do not wait, immediate action *iw* acquire and analyze additional data
 - ao no action
 - aa amber alert
 - ar red alert

Operation of Collision warning and Active Safety System

Comparison of distracted driving and automation

Optimal Courses of Action for Avoiding Rear Crashes and Transition to Automation

Location of vehicle &	d _{1.5c}	d _{1.25c}	<i>d</i> _{1.0c}
prior probabilities	$P'(d_{1.0c}) = 0.1$ $P'(d_{1.25c}) = 0.2$ $P'(d_{1.5c}) = 0.7$	$P'(d_{1.0c}) = 0.15$ $P'(d_{1.25c}) = 0.7$ $P'(d_{1.5c}) = 0.15$	$P'(d_{1.0c}) = 0.7$ $P'(d_{1.25c}) = 0.2$ $P'(d_{1.5c}) = 0.1$
Driver distraction	Not distracted	Somewhat distracted	Distracted
Optimal course of action	i _w & a ₀	i _{w &} a _a	i _{0 &} a _r . If no action is taken, launch automated braking.

Optimal Courses of Action for Avoiding Lateral Crashes and Transition to Automation

Separation distance &	S _{2c}	S _{1.5c}	s _c
prior probabilities	$P'(s_{1.0c}) = 0.1$ $P'(s_{1.5c}) = 0.2$ $P'(s_{2c}) = 0.7$	$P'(s_{1.0c}) = 0.15$ $P'(s_{1.5c}) = 0.7$ $P'(s_{2c}) = 0.15$	$P'(s_{1.0c}) = 0.7$ $P'(s_{1.5c}) = 0.2$ $P'(s_{2c}) = 0.1$
Driver distraction	Not distracted	Somewhat distracted	Distracted
Optimal course of action	i _w & a ₀	i _{w &} a _a	i _{0 &} a _r . If no action is taken, launch automated braking.

Driving Environment and Optimal Actions under Automation

Driving	Deceleration case optimal	
environment	actions	
d _{1.0c}	i _{0 &} a _E	
d _{1.25c}	i _{w &} a _N	
d _{1.5c}	i _{w &} a ₀	

NOTES: a_o is no action. a_E is emergency deceleration. a_N is normal speed change.

Driving Environment and Optimal Action under Automation

Driving	Acceleration case optimal	
environment	actions	
d _{1.5c}	i _{w &} a ₀	
d _{1.75c}	i _{w&} a _N	
<i>d</i> _{2.0c}	i _{w &} a _H	

NOTES: a_o is no action. a_N is normal speed change. a_H is high acceleration.

Conclusions

Importance of a well-designed transition

Research attention is drawn to the <u>complexity</u> of modeling the transition from human control to machine control under traffic states that involve high degrees of collision risk.

Characterization of driving states that require real-time transition from driver-in-the loop to the automated function.

Conclusions (Continued)

The Bayesian approach to meeting the requirements of the emergency transition has merits

The example cases illustrate the integration of intelligent technology, Bayesian artificial intelligence, and abstracted human factors

Sponsors

Natural Sciences and Engineering Research Council of Canada (NSERC)

Ministry of Transportation, Ontario (MTO)