
AMAA Berlin
July 23
2014

Andras Ferencz

(Test automation and real-time testing consultant)

Advantages of Utilizing the OMNEST

Simulation Environment in
Automotive Research, Testing and

Verification

The following challenges can be
addressed using OMNEST

• Rapidly increasing system complexity

• Heterogeneous networks and a variety of coding
environments
in the development

• Verify Control stability, robustness, functionality, determininsm.

• Reduce time to market and costs.

Challenges for the platform/system
integrator (OEM)

• OEMs need a process where requirements can be specified
and verified on the system level.

• Requirements must be defined at the component level, which
can be assigned to individual suppliers.

• Cars need to be integrate with cities, people, other vehicles
etc.

Challenges for the component or
module developer (supplier)

• Representative stimulus signals should be developed for the
component testing

• A good understanding is required about other components
affecting the behavior of the component under development

• Messaging stimulus is hard to develop and maintain with
parameter and design changes

• Using more and more wireless sensors

What is OMNEST?

A generic simulation framework:

• For the simulation of complex distributed systems:

– distributed hardware and software architectures,

– communication networks,

– queuing networks,…

• Technically: a C++-based simulation kernel plus a set of
libraries and tools (GUI and command-line)

• An open environment

– in terms of source code, embedding, extensibility, integration,

modularity

Model Structure

Component-oriented approach:
- The basic building block is a module.

- Simple modules can be grouped to form compound modules.

- Modules are connected with each other.

Defining the Behaviour

Behaviour is encapsulated in simple modules.

A simple module:
– sends messages,

– reacts to received messages

– collects statistics

Simple modules are programmed in C++.

Simulation Models Available for Several
Domains

• Communication network protocols: TCP, IPv4/IPv6, Ethernet,
VoIP, WiFi, ad-hoc wireless networks...

• Automotive protocols: CAN, LIN, DC-BUS, FlexRay, IEEE 802.1
AVB

• Wired and wireless sensor networks

• Support for Hardware-in-the-Loop simulations

Scenarios

Example application using both
in- and inter-vehicle communication

Intersection
Controller

Traffic Light
Controller

Vehicle

Vehicle Model

General Vehicle Model

Specific configuration of the Vehicle
Model in one of the cars during the
simulation

Gateway Model

In-Vehicle Network Model

Full External Lights Control model

Demonstration Setup

CAN
Breakout

box

ECU
emulator
gateway

DC-BUS
remote IO
modules

CAN
interface

DC-BUS IO
eval board

Use inheritance

• Network/system inheritance

• Module inheritance

• Initial parameter
inheritance (Configuration)

Reuse existing code and custom libraries

Application layer control code can be
integrated for testing functionality

void UDPPositionApp::handleMessage(cMessage *msg)
{
 updateMyPosition();

 if (msg->isSelfMessage())
 {
 processTimer(msg);
 }
 else if (msg->getKind() == UDP_I_DATA)

 {
 // process incoming packet
 processPacket(PK(msg));
 }
 else if (msg->getKind() == UDP_I_ERROR)

 {
 EV << "Ignoring UDP error report\n";
 delete msg;
 }
 else

 {
 error("Unrecognized message (%s)%s", msg->getClassName(), msg->getName());
 }

 if (ev.isGUI())

 {
 char buf[40];
 sprintf(buf, "rcvd: %d pks\nsent: %d pks", numReceived, numSent);
 getDisplayString().setTagArg("t", 0, buf);
 }

}

Reuse existing models

Models written in:

• C/C++

• Simulink

• SystemC

• NI Model Interface Toolkit compatible models

Continuously growing scientific and student community
is developing models for OMNEST/OMNeT++

- Over 10,000 academic installations
- About 300 publications each year, growing steadily in number

(Google Scholar data)
- Open source models

Network Analysis (network architect)

• Jitter, latency analysis

• Signal propagation time check

• Bandwidth analysis

• Event diagrams

• …

Full virtual testing takes advantage of
the high performance simulation kernel

• 500k-1000k events/sec

• Complex systems run at 5-10x real time.

• Scalable by using parallel simulation

• Check signal behavior and timing

Reuse models in component testing
and system integration for

Rest-Bus Simulation

• Use real hardware

together with
prototype hardware

or connect an
existing production

component to the

rest of the system

• External Ethernet

adapter

• External WiFi

• NI-XNET CAN, LIN,

FlexRay

Use COTS hardware to quickly prototype
the new component

Capture and visualize bus traffic with
your favorite tools

Reuse models and simulation components
in hardware validation testing

• Send the components to a Real-Time hardware testing
environment such as NI-VeriStand

• Network configuration and connections can be exported to
an NI-VeriStand System Definition file

Come to the table, ask us questions, and

visit www.omnest.com !

Thanks you for your attention!

http://www.omnest.com/

