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The car of today is becoming an electronic technology hub...

Zero casualties Mobility for Everyone
Electrification of the Car
48V Board Net

CO2 Reduction

Entertainment Fun

Active & Passive Safety
ADAS
1ISO26262 compliancy

Autonomous Drive

Data Management Connectivity

Data Security Intelligent mobility
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Innovation driven by Automotive Mega Trends
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Electronics & Semiconductors dominate today’s car

Power Train

The mechanics are evolving Evolution of electronics makes the
but slowly and mostly driven by interaction with the mechanics
weight reduction more efficient

7

jan Sounds good so far but...........
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Automotive Semiconductor Market

Major Trends and Challenges

» Complexity increase vs. ASP pressure = <ros sudo
 Strong price pressure during the last years T

- Tools & SW
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. Complexnty o

Example: 4cyl GDI Powertrain MCU 2005 vs. 2015

* price down of ~40%
e product complexity increase of factor >10 " secssudo |

» factor >10 gate density increase / ~20% die size cut DDH

* Tremendous complexity increase during last years
» Product complexity (scalability, multicore, safety, security,..)
» EcoSystem complexity (Tools, SW, Collaterals,..)

* Increased demand for supply security and quality (dual
source, long term delivery, DFx, Safe Launch,..)

Training Material & Marketing collaterals -J

ST.com) = Technical Material on core & peripherals
manual, + Bolero (20 core)

~ Collateral
o CompIeX|ty
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* Overall R&D cost increase

 Technology and product development cost increase -
SPC56
90nm Technology 55nm Technology 40nm Technology o Wzn:iucuon Ramp-up
0.18um? Flash cell 0.13um? Flash cell 0.08um? Flash cell - Qualtty & Supply
« Test and validation cost increase .;N?‘ Complexity

. 2re] J v.s frmed
. Itd! lest coverage
related to

* Material cost increase (wafer, mask, tools,..) = I

32011 Q42011 Q12012 Q22012 Q32012 Q42012 Q12013 Q22013 Q32013 Q42103
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Security Needs in Automotive?
Use cases? Which ECUs ? Model Year?,..

Modification of
Mileage

V2x Infrastructure
Intelligent traffic management V2V
& V2| for further reduction of the

niimhar and caveritvy nf car

Anti-Tuning
(HW/S\{\{ fulnctiona!ity gctiyiatio\n,
Conclusion
» Protect
» few dedicated critical functionalities (eg. immobilizer, milage)
« and the car network entry points
(so high-end module/MCUSs)
« from SW attacks

> Isolate security function from the application function > HSM Concept

Driver Info / Multimedia /..

Privacy Protection

Anti-Fraud

(lllegal after market ECUs — Security Master
ECUs -requires a full HSM Network-)

Anti-Fraud
"I (impersonate —e.g. electronic license plate)
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To FIT or notto FIT....

Random Hardware Faults Computation

~1-100 FIT hard fault —
. ~1000 FIT soft errors ‘ = * D.C.: Diagnostic Coverage
55 ;3;5;»:%% Architectural ' tells how many dangerous
2109% . . countermeasures faults are being detected by
S estimation _/A\ D.C. > 99.9% safety countermeasures
=T  Different targets given by
s Tierls

~80 dangerous faults < 1 dangerous fault

per M Cars per M Cars

per month \ per year J

Y
ASIL-D

* High focus on random faults (can be quantified and easily assessed during safety
audits)

» Today complexity (and probably overdesign) is built based on
* Fault rates (A) on hard faults measured either on non mature technologies or coming from fault rate
handbooks (SN29500, IEC62380...), quite pessimistic on both cases
* Fault rates (A) on on soft error measured in lab only
« Systematic faults are still the primary source of reported accidents today, though.

« Complexity does not help prevention of systematic faults
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Roadmap of Safety in Automotive
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Adressing the increasing risk : G : .
9 g Addressing unavailability Solution for very high
associated to soft errors : o
N induced by safety measures availability
: : + requirement
Reducing system safety cost impact by : .
: . : : Reducing cost of MCU safet Autonom rivin
introducing single MCU solutions g y UMELS ¢ 9
Sust hutdown/restart table wrt. safet System shutdown/restart acceptable wrt. Loss of a (minimum) support of
ystem shutdownitestart acceptable wrt. salety safety with few exception (driving the E/E system is not
(system unavailability remains an potential risk ituati dup t tai i1abilit table f f
for quality/image) Situa IOI‘I) and up to a certain unavalabpility acceptaple ro_m safety
risk pespective
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And new challenges...

» semiconductor cost trend inversion

* number of available parts for automotive (possible consumer
parts in automotive despite safety/availability concerns?)



Complexity Trends: Safety impact

# 32-bit CPUs . .
Fail operational CPU

— B *
- \'ﬁ/
, N .

safety + security

rate
5 —

4 — ~2 x CPU growirates
3 — -, E/

= f
1— __4@7
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180nm 90nm / 55nm 40nm

Functionality-only rate

@ functional area B fail-silent area (real case estimation) @ fail-operational area (real case estimation)

Impact from Safety Measures on silicon area is relevant:
* Area allocated to Fail-Silent weights more than 100% on CPUs and more than
50% on total Digital
* On Analog impact is more limited, but almost no technology shrinking applies
G-I- Introduction of Fail-operational is worsening the scenario
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Silicon Technology Perspectives — Scaling

Semiconductor industry scaling pattern is at the basis of a challenging
EXPONENTIAL COST GROWTH PATTERN at 360°

Process development
Fab cost by node cost by node Chip design cost

4.6X

10X

6.7X

4Xx

2.3X
1.6X
X
130nm 90nm 65nm 45nm 32nm 22nm 130nm 90nm 65nm 45nm 32nm  22nm 130nm 90nm 65nm 45nm 32nm  22nm
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28nm challenges summary

Ability to () CMOS Supply
Techno (*) Leakage  (*) Dynamic embed EEOL 5V Analog & reliability voltage Radiation
Consumption Consumption : IO's NBTI, HCI, - Immunity
memories scaling
TDDB
28nm SiON — + r + — —— —
28nm HKMG + “r —— — — — —
28nm HKMG
FDSOI T + - - - + +
Ultra Thif Buried Oxide Sio, / HISio-N/ TiN

Undoped
|_Channel (7nm)

SION SI0, / HISIO-N / TiN or TiN/AI Back Gare

l FDSOI
l l ; High K/Metal Gate

40nm Bulk SiON 28nm ‘ 1

Bulk High K/Metal Gate
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What is driving the ADAS field

Two Major Trends

Evolution Revolution

New Safety Rating Regulations Autonomous Driving Megatrend




Long range
Radar

Radar

Camera

Example of an ADAS System

] [ Vehicle network

Zx

ADAS
UNIT

C2X /C2C 802.11p

Connectivity sub-system

GPS/Glonass/Galileo .

Positioning sub-system

Sensor

Fusion ECU

Signal

Radar sensors .
Processing

Radar
Processing
ECU

Radar sub-system

Vision
Sensors

Vision

Processor

Vision sub-system

\ \

\

Curve Warning
Active front lighting

“\_‘_

-

Blind épot detection

Lys
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Multiple Technologies Leading to Enhanced Safety




Trend is that Vision will drive future systems

» The functional territory taken by the camera is rapidly increasing:
» 2011: warning against collisions
e 2013: ACC, partial brake AEB, TJA
« 2015: full brake AEB

WHY?

* Richest source of raw data about the scene - only sensor that can reflect the
true complexity of the scene.

* The lowest cost sensor - nothing can beat it, not today and not in the future.

o Cameras are getting better - higher dynamic range, higher resolution

Radars/Lidar/Ultrasonic: for redundancy, robustness
"I N 7//4
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But we must find a safe way

Don’t compromise NCAP points, compromise reputation when “tested in the wild”

e False Negative: miss fires, late
fires, Inaccurate measurements..

* False Positives: unexplained
braking, inaccurate firing,
nuisance braking...

compromise reputation, recall



Evolution : Incremental Growth

* Animal Detection

e Left Turning Across Path (LTAP)
* Road Profile: Bumps, Potholes
* TSR Evolution

* Traffic Light Detection

 Stop Line Detection

» Brake and Turn-light detection
 Early cut-in detection

* Road Signs detection

» General Objects detection

Lys
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. 2007 | 2008 b2010—11' 2013 '2015

® First © First Bundlingof g First @ FirstCameraOnly @ First Camera Only
Cam:;:i/oF:]adar LDW, IHC, TSR Pedestrian AEB ACC and Traffic Jam Full Auto Braking
Assistant (AEB)

First Camera First Camera
Only FCW Only AEB
(partial b
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Two approaches to autonomous driving

Pre-drive recording _ _
HD Maps Sparse recording  No Recording
of 360 surround 3D

l l | l

ﬁ
Google — —) G \/|obileye

. “Sense & Understand”
“Store & Align”
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Revolution : Growth by leaps and bounds

* From sensing to comprehensive perception

* Machine learning used already for object sensing (decomposing video)

e Autonomous driving needs

 Path planning based on holistic cues

pixel labeling
coupling

» To dynamically follow the drivable area

= constraints

* Deep learning is being used by Mobileye for

path planning

* Free space

Graphical Model
-motion :
-k objects

H vehicles (rear, side,
 Path planning type), pods,
1000 traffic signs,

traffic lights,

pavement markings,..

motion segmentation

» General objects S AT

ropagation:
tor Approwimate Inference. [EEE T, on infamation Theory, S6(12), B284-6316.

» 1000 traffic signs =

Our Visian. Your Safety ™

» Classical object enhancement

Lys
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Hardware : Family of Computer Vision processors

EyeQ4-High

block diagram

2x32b
1.6GHz DDR SDRAM

LPDDR4/3/2 LPDDR4/3/2
PHY PHY

LPDDR4/3/2 | LPDDR4/3/2
Controller | Controller

mCPU

interAptiv
64/32K
DA%

TQ—TPDTMM

SCHEDULER | SCHEDULER

1Ghz

Serial Flash
Quad DDR/SDR |\

Peripheral Transport
Manager (PTM)

M5150
24/16K

DA [BE

Quality of
Service

32K SP

T TTx | Power | ax
UART GPIO Mng SP|
3x 3X 8X
BEE CAN-FD 12C Timer
AX]
m 1Gbs Ethernet T —

Interconnect & |

EyeQ4-Mid
block diagram

1x32b
1.6GHz DOR SDRAM

LPDDR4/3/2
PHY

Master |:> Slave

Master |::> Slave

28nm FD-SOI process. Engineering Samples 10/2015
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Conclusions 1/2

* ADAS is to be dominated by cameras.

* The primary sensor for automated driving would also be the
camera - multiple cameras.

* Radars and Lidars would be used for redundancy and for
additional robustness when cost allows.

 Visual interpretation is difficult if done at high quality - requires
huge validation data over multiple geographies and OEMSs.

« Automated Driving requires Environmental modeling and path
planning which in turn require a leap-frog technological jump (if
done at high quality and low cost).
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Conclusions 2/2

* Electronics are fueling the innovation in the car
» Cost, complexity and technology are changing the rules

» The safety bar is getting high and mandates complex techniques
e Functional safety
e Security
 Virtualization

« Partially autonomous driving needs all of the above and is coming to
a road near you sooner than you may think

» Watch this space, it may be a bumpy ride but it will be fun

Lys
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