

COMPARSION OF ENERGY OPTIMIZATION METHODS FOR AUTOMOTIVE ETHERNET USING IDEALIZED ANALYTICAL MODELS

Stefan Kunze, Rainer Pöschl and Andreas Grzemba

Outline

- 1. Introduction
- 2. Energy Optimization Methods
- 3. Analytical Assessment
 - 1. Model 1 Periodic Frames
 - 2. Model 2 Periodic Blocks
 - 3. Model 3 Periodic Bursts
- 4. Script-Based Simulation
- 5. Conclusion

1 Introduction

- Automotive Ethernet is an emerging technology
- Energy optimization is not yet the main focus
- In this paper a comparison of two approaches is presented
 - Using idealized traffic models
 - The presented considerations are based on paper by N. Balbierer

$$P_{\text{PHY,EEE}}(u) = \begin{cases} \frac{P_{\text{PHY,max}} - P_{\text{PHY,LPI}}}{u_{\text{th,EEE}}} u + P_{\text{PHY,LPI}}; & u < u_{\text{th}} \\ P_{\text{PHY,max}}; & u \ge u_{\text{th}} \end{cases}$$

$$u_{\text{th,EEE}} = \frac{s_{\text{frame}}}{\left(T_{\text{EEE}} + \frac{s_{\text{frame}}}{r_{\text{data}}}\right)r_{\text{data}}}$$

2.1 Energy Optimization Methods

Energy Efficient Ethernet

Low Power Sleep

- Power over Ethernet (in particular Power over Data Line)
- Energy Detection Module
- Low Frequency Wakeup

2.2 Comparison of different concepts

Energy Efficient Ethernet

FECO tradific to the first trade of the first trade

Low Power Sleep

- only PHY is powered down
- low saving
- fast transition

- whole ECU is powered down
- high saving
- slow transition

3 Idealized Analytical Models – Limitations

- Periodic Traffic
- Data rate: 100 Mbit/s
- Idealized timing
 - Constant transition times
 - Ideal timing of transitions
- Idealized power consumptions
 - Constant within a power mode
 - Ideal transitions
 - Not transient, e.g. no delays or overshooting
- Single point-to-point link
 - → consecutive wakeups not considered

3.1 Model 1 – Periodic Frames

$$P_{\text{ECU,EEE}}(u) = \begin{cases} \frac{P_{\text{PHY,max}} - P_{\text{PHY,EEE}}}{u_{\text{th,EEE}}} u + (P_0 + P_{\text{MAC}} + P_{\text{PHY,EEE}}); \ u < u_{\text{th}} \\ P_0 + P_{\text{MAC}} + P_{\text{PHY,max}}; & u \ge u_{\text{th}} \end{cases}$$

$$P_{\text{ECU,LPS}}(u) = \begin{cases} \frac{P_0 + P_{\text{MAC}} + P_{\text{PHY,max}} - P_{\text{PHY,LPS}}}{u_{\text{th,LPS}}} u + P_{\text{PHY,LPS}}; & u < u_{\text{th}} \\ P_0 + P_{\text{MAC}} + P_{\text{PHY,max}}; & u \ge u_{\text{th}} \end{cases}$$

3.1 Assumed Parameters

Description	Sign	Value
Power consumption of ECU (excl. NW omponents)	P_0	1000 mW
Power consumption of MAC	P_{MAC}	38 mW
Power consumption of PHY (normal mode)	$P_{\rm PHY,max}$	300 mW
Power consumption of PHY (LPI mode)	$P_{ m PHY,LPI}$	30 mW
Power consumption of PHY (LPS mode)	$P_{\mathrm{PHY,LPS}}$	1 mW
Transition time for EEE	$T_{ m EEE}$	250 μs
Transition time for LPS	$T_{ m LPS}$	250 ms

3.1 Model 1 – Periodic Frames

3.2 Model 2 - Periodic Blocks

3.3 Model 3 - Periodic Bursts

$$P_{\text{ECU}} = \frac{P_{\text{i}}T_{\text{i}} + P_{\text{b}}T_{\text{b}}}{T_{\text{i}} + T_{\text{b}}}$$

$$P_{\text{ECU,x}} = \frac{m_{\text{x}}u_{\text{b}}T_{\text{b}} + y_{\text{x}}(T_{\text{i}}' + T_{\text{b}}) + T_{\text{tr,x}}P_{\text{max}}}{T_{\text{i}} + T_{\text{b}}}$$

3.3 Model 3 – Periodic Bursts

$$P_{\text{ECU,EEE}} = \frac{\frac{P_{\text{PHY,max}} - P_{\text{PHY,EEE}}}{u_{\text{th,EEE}}} u_{\text{b}} T_{\text{b}} + P_{\text{EEE}} (T_{\text{i}}' + T_{\text{b}}) + P_{\text{ECU,max}} T_{\text{EEE}}}{T_{\text{i}} + T_{\text{b}}}$$

$$P_{\text{ECU,LPS}} = \frac{\frac{P_{\text{ECU,max}} - P_{\text{PHY,LPS}}}{u_{\text{th,LPS}}} u_{\text{b}} T_{\text{b}} + P_{\text{PHY,LPS}} (T_{\text{i}}' + T_{\text{b}}) + P_{\text{ECU,max}} T_{\text{LPS}}}{T_{\text{i}} + T_{\text{b}}}$$

for
$$u_b > u_{th}$$
: $P_{ECU,LPS} = \frac{P_{max}(T_b + T_{LPS}) + P_{PHY,LPS}T_i'}{T_i + T_b}$

$$P_{\text{ECU,EEE}} = \frac{P_{\text{max}}(T_{\text{b}} + T_{\text{EEE}}) + P_{\text{EEE}}T_{\text{i}}'}{T_{\text{i}} + T_{\text{b}}}$$

3.3 Model 3 – Periodic Bursts

4 Script-Based Simulation

5 Conclusion

- Energy optimization methods can contribute considerable power savings
- Best suited method strongly depends on type of traffic
 - LPS best suited for ECUs that aren't required for prolonged periods
 - EEE suited for nodes that can't be powered down for prolonged periods (possibly inter-switch communication)
- Future work:
 - Consider more complex traffic models
 - Consider realistic transitions
 - Consider entire network
 - Multiple nodes
 - Consecutive wakeups