Next generation drive-train concept featuring self-learning capabilities enabled by extended IT functionalities

Alexander Otto, Sven Rzepka *Fraunhofer Institute for Electronic Nano Systems ENAS*

Micro Materials Center Head: Prof. Dr. Sven Rzepka

AMAA 2016, 22-23 September 2016, Brussels (Belgium)

I. Introduction

- Historical evolution of electric drives in automotive:
	- First fundamental understandings of magnetic fields, electromagnets etc. starting from approx. 1800
	- Invention of first electric motors in 1820s and 1830s
	- First electrical drives in second half of 19th centuries
	- First electric car (with 4 wheels) in 1888 (Flocken Elektrowagen)
	- Golden age of electric vehicles from approx. 1896 1912
	- Revival of interest in electric vehicles starting in 1990s
- Despite the various improvements in the details, the principle system architecture has not changed much!

Source: Peter Barlow: A curious electro-magnetic Experiment. The Philosophical Magazine and Journal, Ausgabe 59, 1822

Electrical vehicle from Davidson, 1839

Source: T. du Moncel, Electricity as a Motive Power, London, 1883, fig. 32

Flocken Elektrowagen, 1903

Source: Deutsches Museum

…

Micro Materials Center Head: Prof. Dr. Sven Rzepka

Barlow's wheel, 1822

I. Introduction

Drive-trains today:

- Various applications reaching from industrial automatization (e.g. production processes) to traction applications (railway, automotive, …)
- Almost 50% of the overall world-wide produced electrical energy is consumed by electrical machines
- Besides the specific requirement in each of the application fields, there are universal needs for:
	- Maximum energy & power density
	- **Maximum energy efficiency**
	- High reliability & robustness
	- Minimum costs

Source: TU München

Traction applications

Source: Deutsche Bahn AG / Gert Wagner

Electric mobility

Source: BMW

II. State-of-the-art for electrical drive-train systems

Example of state-of-the art HV system architecture

Source: Fraunhofer IISB

Folie 4 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

II. State-of-the-art for electrical drive-train systems Latest trends

Extension of image based on: Wolfgang Dettmann, Experience with ECSEL The 3Ccar project, SSI conference, 2015

Folie 5 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

II. State-of-the-art for electrical drive-train systems

a) SoA Drive Unit b) Integrated Drive Unit c) Integrated Drive Unit

Fraunhofer **ENAS**

Head: Prof. Dr. Sven Rzepka

Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

II. State-of-the-art for electrical drive-train systems

Example: Newly developed drive-train system within COSIVU project

- Modular inverter design with SiC BJTs and diodes, adaptable to different vehicle platforms
- High compactness (mechatronic integration of electric motor, power electronics, cooling system and control electronics) HV bus /
- Superior efficiency (up to 50% less power losses compared to conventional systems)
- Health-monitoring for the SiC power modules (thermal impedance spectroscopy)
- Health-monitoring for the e-motor and gearbox (structure-borne sound analysis)

Wheel Adaption

Electric Motor

(+ Transmission)

Power Switches

Power Supply

Communication devices

Solid-borne sound sensor

Oil condition

sensor Temperature

sensors

Current sensors

Temperature sensors

µController

Smart & Compact Drive Train Unit

Source: Fraunhofer IISB Source: Elaphe Propulsion Technologies

Folie 7 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

Micro Materials Center Head: Prof. Dr. Sven Rzepka

Battery

Project partner: Volvo CE, Hella, Swerea IVF, Elaphe, Sensitec, Fraunhofer IISB + ENAS, Berliner Nanotest, TU Chemnitz

Control & Communication Module Cooling

Traction Module

Power Module

- Increasing requirements for electronic systems in vehicles due to introduction of electrified drivetrains, Car2X communication, autonomous driving features, …
- Paradigm shift:

Closed-loop-controlled systems

Autonomous driving

Source: Daimler

Car2X communication

Source: University of Michigan

Drive-train electrification

Source: Volkswagen

Folie 8 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

Potential application scenario: Detection of the actual road conditions and triggering of pro-active drive-train actions

Technological challenges

Efficient and compact WBG based power electronics

- Increasing importance of wide-bandgap devices (SiC, GaN, …) due to their superior electrical and thermal properties (Ε_c, Τ_m, λ, ν_{sat}, …)
	- \rightarrow higher switching frequencies \rightarrow improved energy efficiency

WBG devices

- Due to high switching edges (dv/dt) enabled by WBG dev.
- Optimized signal forms, which include pre-distortions intended to counter-balance the intrinsic imperfections of the motor coils for maximum over-all motor efficiency, will amplify this effect
- Increased risks of interference for IT electronics part where sensors generate signals in the range of just a few μV to be processed, evaluated, and memorized.
- \rightarrow Protective measures / strategies for assuring EMC required!

EMC issues Reliability issues

- Thermo-mechanical risks due to potentially higher operational temperature of WBG devices
- \blacksquare Reduces the cooling efforts leading to significant reductions in size and weight of the power modules
- But: Also IT electronics will be exposed to temperatures ≥200°C
- \rightarrow New high-temperature resistant system-in-package (SiP) solutions for the (information) modules are required

Micro Materials Center Head: Prof. Dr. Sven Rzepka

Folie 12 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

III. Novel concept for drive-train architecture Reliability / Robustness

- New integration and assembling technologies for high operation temperature
- New high-temperature resistant molding and potting materials
- New cooling concepts with a reduced number of interfaces between heat source and sink as well as solutions for inter-layer heat removal

Micro Materials Center Head: Prof. Dr. Sven Rzepka

+250°C

+175°C

0°C

Si devices

WBG devices

Folie 14 Alexander Otto Micro Materials Center, 23.09.2016 © Fraunhofer ENAS

IV. Summary & Conclusion

- Introduction of novel concept for next generation drive-train architectures based on a modular and ultra-compact design with extended information and communication technologies:
	- Novel sensor network and implemented health-monitoring algorithms allows to improve significantly fault susceptibility and up-time
	- Pattern recognition capabilities will enable performance optimization based on self-learning and cloud computing
- Discussion of some mayor technological challenges such as:
	- WBG devices and EMC issues
	- **Efficient cooling**
	- Reliability & robustness

Thank you for your attention!

