

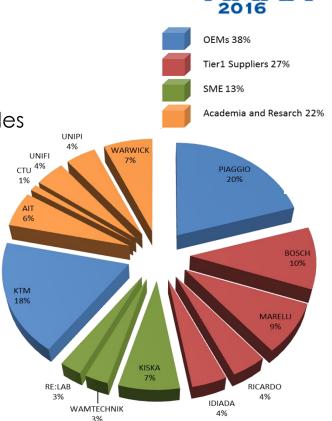
Smart Systems for the Automobile of the Future

Brussels, 22-23 September 2016

The RESOLVE Project Technologies for Urban Light Electric Vehicles

M. Perterer¹, M. Pieve²

¹KTM Technologies GmbH, St. Leonharder Str. 4, 5081 Salzburg/Anif Austria ²Piaggio & C. Spa, Viale Rinaldo Piaggio 25, 56025 Pontedera Italy


- Project Overview
- User's mobility needs and expectations
- Preliminary vehicle specifications
- Vehicle layout and architecture
 - Demonstrator 1: L2e
 - Demonstrator 2: L6e
- Modular battery pack
- Energy efficiency and active safety
- HMI Concept
- Summary and Outlook

- **RESOLVE** Outlines
 - Range of Electric SOlutions for L-category VEhicles
 - EC Call: H2020 GV.5-2014 –
 Electric two-wheelers and new light vehicle concepts
 - Contract Number: nº 653511
 - Project Start Date: 01.05.2015
 - Duration: 36 Months
 - Project costs: 6,92 M€
 - Total effort: 606 PM
 - Project Coordinator: Piaggio & C. S.p.A.
 - Project Officer: Georgios Charalampous

KIM GROUP

Consortium

RTM GROUP KTM (A)

- Piaggio (IT): coordinator
- RICARDO

University of Pisa (IT)

Ricardo (D)

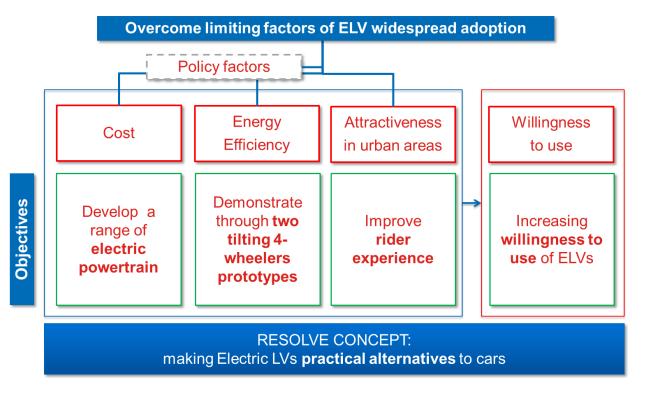
University of Warwick

(UK)

- 🗐 BOSCH Bosch (D)
- KISKA (A)
 - MARELLI

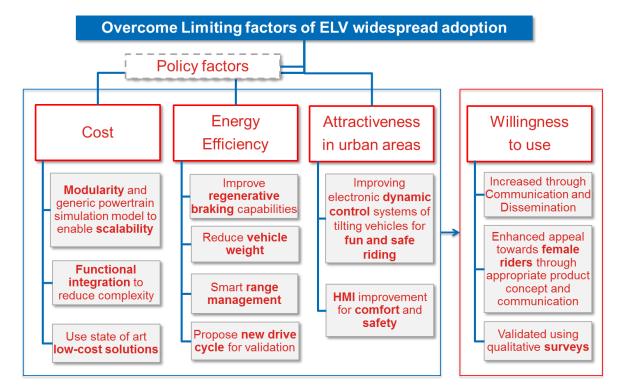
- 155

- Marelli (IT) RE:Lab (IT)
 - RE:Lab (IT)
 - University of Firenze (IT)
 - University of Prague (CZ)
- wamtechnik (PL)



AMAA 2016

Objective

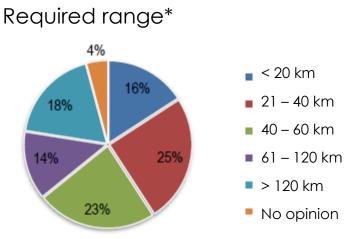


AMAA 2016

• Strategy

User's mobility needs and expectations

- Online User Survey
 - 791 people from 13 countries ٠
 - 83% male 17% female •


Key factors to decide for EV

- Driving distance
- 2 people + Luggage space ٠
- Comfort •
- Weather protection ٠
- Agility in traffic
- HMI ٠
 - ✓ Integration future Mobility
 - ✓ Connectivity
 - ✓ Charging infrastructure

Reasons for EV Drawbacks current EV

- vehicle range too short
- Recharging time too long
- Cost of ownership

- + Efficiency
- Cost of Ownership
- Driving pleasure
- Possibility to access restricted/ pedestrian traffic areas

*according to users with daily driving distance below 30km

Smart Systems for the Automobile of the Future Brussels, 22-23, 22 - 23 September 2016

Horizo do funding

Preliminary vehicle specifications

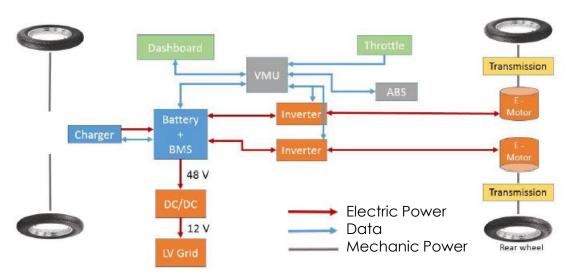
- Modular battery architecture
 - Standard Lithium-ion cells
 - single pack below 60V
- Energy efficiency
 - affordable lightweight concept
 - Target range: 60-80 km
- HMI
 - Connectivity
- Attractiveness
 - price
 - Comparable driving behavior to motorcycle (tilting)

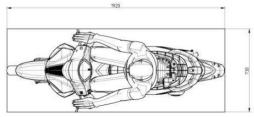
Smart Systems for the Automobile of the Future Brussels, 22-23, 22 - 23 September 2016

vehicle	wheels	Weight incl. Driver	Engine power	Target energy consumption
RESOLVE D1	4	225 kg	4 kW	35 Wh/km
Piaggio Liberty Email	2	200 kg	2,6 kW	40 Wh/km
RESOLVE D2	4	325 kg	6 kW	41 Wh/km
BMW C evolution	2	340 kg	11kW	56 Wh/km
Renault Twizy 45	4	545 kg	4kW	86 Wh/km

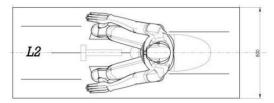
Comparison of RESOLVE vehicles with competitors

8

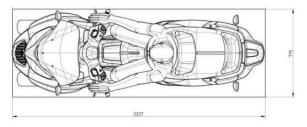

RANGE OF ELECTRIC SOLUTIONS FOR I



Vehicle layout and architecture – D1



- Preliminary layout
 - Ergonomic models : 2 passengers + Luggage
 - Powertrain: electric + torque vectoring

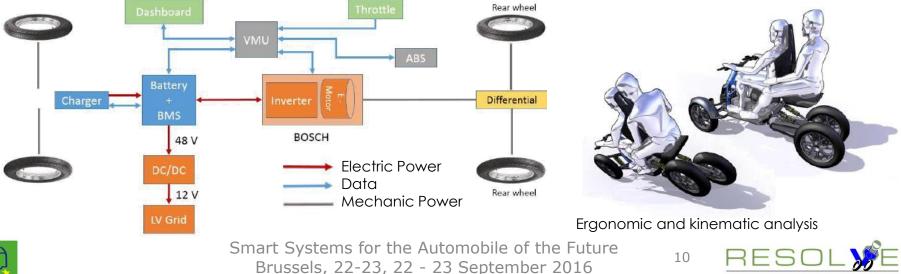


50cc Piaggio Scooter (L1 Category)

Demonstrator 1 (L2 Category)

Piaggio MP3 (L5 Category)

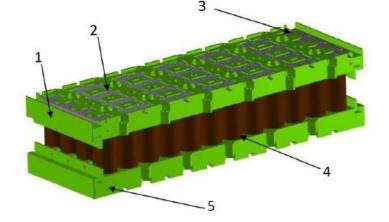
Vehicle layout and architecture – D2



- Preliminary layout
 - Ergonomic models : 2 passengers + Luggage
 - Powertrain: electric + differential

Study of different structural concepts

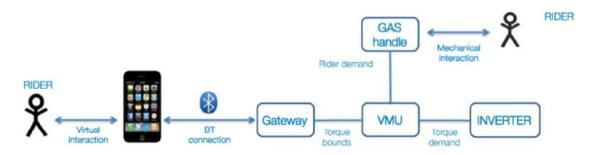
BANGE OF ELECTRIC SOLUTIONS FOR L CA



Modular Battery Pack

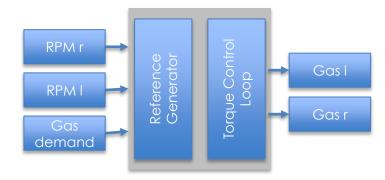
- Architecture
 - 12S4P (48 cells)
 - Weight: approx. 2.5 kg
- Li-ion, LG18650HG2 Cells
- Concept D1
 - 2 battery packs with 3 modules and one BMS each
 - Each Battery pack: 1554Wh
- Concept D2
 - 1 battery pack with 8 modules and one BMS
 - Battery pack: 4147Wh

- (1) Top cell holder
- (2) connectors
- (3) connectors
- (4) 48 18650HG2 battery cells
- (5) Bottom cell holder



Energy efficiency and active safety

- Advanced vehicle management functions
 - Intelligent Range Management
 - ✓ Overcome range anxiety
 - ✓ Closed loop SOC control algorithm
 - Definition of desired battery discharge according to the route to be covered
 - Energy controller determines speed and acceleration bounds that must not be exceeded
 - Low-level motion controllers ensure to stay within these bounds



Energy efficiency and active safety

- Advanced vehicle management functions
 - Regenerative braking
 - Stability control & torque vectoring
 - ✓ Lean dependent slip control
 - Lean angle estimation block
 - slip ratio calculation block
 - reference generator for optimal lean angle
 - slip controller based on a PID control loop
 - ✓ Active electronic differential
 - Torque vectoring

Active differential scheme

European Union's Horizon

funding from the

ceived

This resea

No

- HMI principles for ELV
 - Principle 1: safety-critical and vehicle-status info always accessible
 - Principle 2: let users set goals in the most straightforward way possible
 - Principle 3: deliver tips and suggestions according to priority levels
 - Principle 4: allow users take action quickly
 - Principle 5: define situation dependent use cases
 - ✓ pre-route (including off-vehicle)
 - ✓ post-route (statistics / learning)
 - ✓ on-route (diagnostic vs. critical events) uses cases
 - Principle 6: define and separate route-levels
 - ✓ Long term (strategic)
 - ✓ 4-5 Kms range (tactic)
 - ✓ imminent (contingent)

- Scalable HMI architecture
- Main functions
 - Energy efficient and safe driving ٠
 - ✓ regenerative braking
 - ✓ stability control)
 - Smart range management ٠
 - Maintenance ٠
 - Personal settings ٠
 - Basic vehicle info
- Concepts
 - All-in-one Solution
 - Distributed solution •

Distributed HMI solution scheme

e

Summary and Outlook

- Project Goals
 - Overcome shortcomings of ELVs
 - ✓ Costs
 - ✓ Efficiency
 - ✓ Attractiveness
 - Provide scalable and modular solutions for L-category vehicles
- Project outcome
 - Mobility concepts for the future
 - 2 Demonstrators
 - ✓ L2e
 - ✓ L6e

Thi

