

The European Commission's science and knowledge service

Joint Research Centre

Assessing the impact of Connected and Automated Vehicles: A freeway scenario.

21th International Forum on Advanced Microsystems for Automotive Applications 25-26 September 2017

Michail Makridis , Konstantinos Mattas, Biagio Ciuffo, María Alonso Raposo and Christian Thiel

AMAA

Anticipated impacts from AVs

Less congestion Shorter travelling time Less pollution Less energy consumption Less accidents More parking space Higher mobility (elderly, kids, etc)

So, is AV-technology that really promising?

Anticipated impacts from AVs

Improvement, probably, won't come unconditioned for reasons such as:

- No clear relationship between penetration of AVs and potential gain (congestion, energy etc).
- Future traffic demand cannot be easily estimated
- Electrification is not interwoven with Automation
- New industry business uncharted waters

Anticipated impacts from AVs

In this work, we study the impact of Connectivity and Automation on a freeway scenario assessing the CACC logic*.

Summarized preliminary results show:

- Less congestion does not necessarily mean less energy consumption.
- Vehicles' coordination might needed to exploit better the potential of the technology.

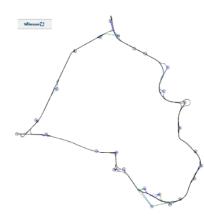
*Mahmassani HS (2016) 50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considera-tions. Transp Sci 50:1140–1162. doi: 10.1287/trsc.2016.0712

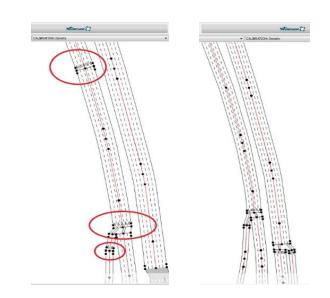
*Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res Part B Methodol 15:105–111. doi: 10.1016/0191-2615(81)90037-0

Case study – Ring road of Antwerp

The idea is to run simulation experiments based on real data on a real network and study the benefits of CACC on a highway.

Ring road of Antwerp and Network


- Connects the 2nd biggest port in Europe with the continent
- Is responsible for over half of the overall pollutant emissions generated by road transport in the city
- The final supply model of the network consists of 119km of roads with 27 centroids (origin/destination points) and 117 intersections.



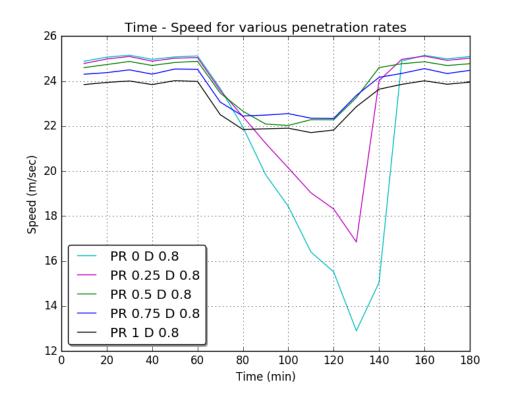
Ring road of Antwerp and Network

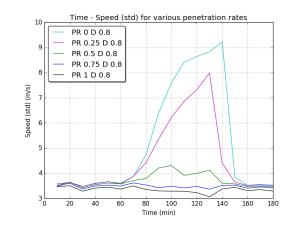
- Traffic demand based on real counts during peak hours
- Post-processing of the loaded network

Simulation scenarios

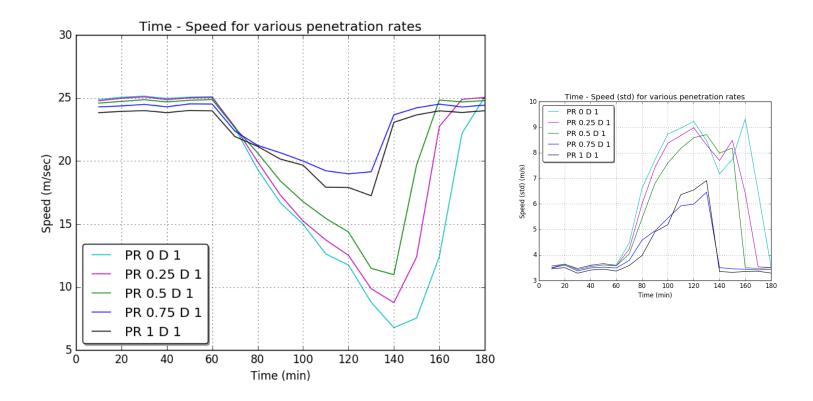
- Variable CACC penetration rates
- Variable traffic demands
- 3 hours of simulation (load peak unload)

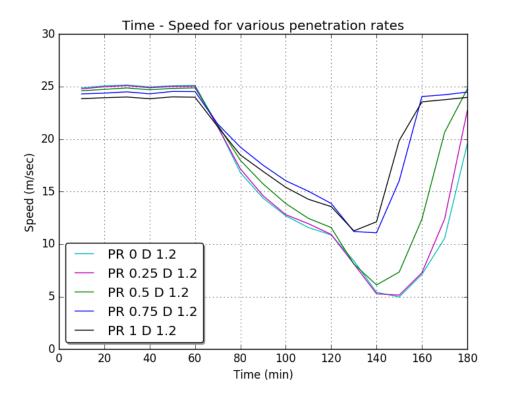
Assessment metrics

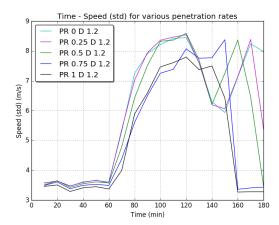

- Harmonic average speed
- Standard deviation of the speed
- Average density of the network
- Average flow of the network
- Total energy consumption on wheels*


*Pavlovic J, Marotta A, Ciuffo B (2016) CO2 emissions and energy de-mands of vehicles tested under the NEDC and the new WLTP type approv-al test procedures. Appl Energy 177:661–670. doi: 10.1016/j.apenergy.2016.05.110

Simulation results - Speed




Simulation results - Speed



Simulation results - Speed

Results – Energy consumption

CACC Penetration rate	Traffic Demand D		
	0.8D	D	1.2D
PR 0	3468.9 kJ	3507.6 kJ	3539.5kJ
PR 0.25	1.60%	2.06%	1.26%
PR 0.5	3.85%	4.98%	4.64%
PR 0.75	5.57%	9.43%	9.95%
PR 1	4.30%	9.36%	15.01%

Conclusions

- CACC, higher demands, higher efficiency
- Penetration rate and CACC efficiency are not linearly correlated
- Particularities of the network need consideration
- Communication with the infrastructure and coordination of AVs could help
- Human behavior (i.e. exceeding speed limit) can potentially facilitate flows

Stay in touch

JRC106565

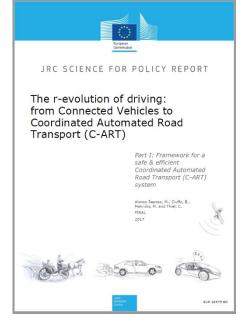
in

Facebook:

LinkedIn:

Joint Research Centre

EU Science Hub: ec.europa.eu/jrc


You Tube YouTube: *EU Science Hub*

or contact us directly at:

Michail.MAKRIDIS@ec.europa.eu Konstantinos.MATTAS@ext.ec.europa.eu Biagio.CIUFFO@ec.europa.eu Maria.ALONSO-RAPOSO@ec.europa.eu Christian.THIEL@ec.europa.eu

JRC will host the 2nd Symposium on Management of Future Motorway and urban traffic systems

Ispra (IT), 11-12 June 2018

EU Science Hub – Joint Research Centre

2017 JRC Science for Policy report -JRC106565 17