

Collaborative Research for Safe Connected Automated Driving

AMAA Conference, Berlin

September 26, 2017

With the customer in focus

- Improving fuel efficiency
- Optimizing handling and maneuverability
- Improving security
- Preventing information overload
- Reducing weight
 - Autonomous driving
 - Exploring uptime services: Extended Vehicle technologies

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 3 2017-09-26

For all Volvo Group brands

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 4 2017-09-26

MAKING IT HAPPEN Planning for the future and setting the direction

Long term technology development and planning

Analyzing customer and society needs

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 5 2017-09-26 competitive product ranges and vehicle services

Planning for

Research collaboration with suppliers, academia, institutes and authorities

Different levels of automation introduced in parallel

Different solutions for different needs

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 7 2017-09-26

Traffic Safety - In the hands of the human factor

30%

Volvo's Accident Research Team has been learning from real life accidents since 1969

Vehicle-related

Road environment

Driver-related

90%

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 9 2017-09-26

Active Safety products Driver Alert Support

Lane Keeping Support

Lane Changing Support

Adaptive Cruise Control

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 10 2017-09-26

On Road: ADAS towards Autopilot

Customer Value

 Safety, Productivity, Convenience

Technology

- Environment perception sensor and sensor fusion
- Vehicle control and decision

Challenges

- Safety
- Environment perception
- Acceptance
- Regulation
- Infrastructure
- Human factors
- Transistion of control

Collission Warning with Emergency Brake

Collaborative ACC towards Automated Platooning

Customer & society Values

• Safety, fuel savings & traffic flow

Definition

 Communication between trucks for cooperative driveline control and safety

Technology

- V2X communication
- High integrity safety

Challenges

- Vehicle to Vehicle introduction cross brand
- Safety sets the limits on time-gap
- User and society acceptance (time-gap and platoon length dependant)
- Regulation and certification

Automation from Controlled Environments towards Public Roads

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 13 2017-09-26

Confined Area & Terminals

Customer Value

- Productivity
- Safety
- Energy Efficiency

Definition

- Automated hauling systems
- Low speed scenarios

Technology

- Fully autonomous vehicles
- Site management & control

Challenges

- Localisation
- Site production system integration

Automated mining truck

Electric automated hauler

Autonomous Refuse Truck in the Urban Environment

Customer Value

- Productivity and Safety
- Improved working condition
- Lower environmental impact

Definition

Automated refuse handling

Technology

- Automated vehicles
- Reversing operation
- Site management & control

Challenges

- Localisation
- Manuvering
- Recycling system integration

Volvo Group, together with Swedish waste and recycling specialists **Renova**, is testing a pioneering autonomous refuse truck that has the potential to be used across the urban environment. The project explores how automation can contribute to enhanced traffic safety, improved working conditions and lower environmental impact

Industry and society need to work together

Standards, rules and regulations

The role of the driver

Social acceptance

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 16 2017-09-26

Working Group: Connectivity & Automated Driving Roadmap Update in Progress

Automated Vehicle Development Paths for Freight Transport

Extract from the final version 7.0 29 May 2017

ERTRAC Roadmap on Automated Driving

New 2017 version: full update!

- Common definitions agreed by the industry
- ✓ Up-to-date development paths for 3 applications
- Updated information on EU and national initiatives
- New structure for 11 key challenges
- ✓ Recommendations for H2020 WP2018-2020

Why Automated Driving?

Automated Driving is seen as one of the key technologies and major technological advancements influencing and shaping our future mobility and quality of life. The main drivers for higher levels of Automated Driving are:

- Safety: Reduce accidents caused by human errors.
- Efficiency and environmental objectives: Increase transport system efficiency and reduce time in congested traffic. Smoother traffic will help to decrease the energy consumption and emissions of the vehicles.
- **Comfort:** Enable user's **freedom** for other activities when automated systems are active.
- **Social inclusion:** Ensure **mobility** for all, including elderly and impaired users.
 - Accessibility: Facilitate access to city centres.

Road Definitions

- Public road with mixed traffic in single or multiple lane operation on regional, and highway operation, various automation level vehicles. Local, regional, national and European and cross boarder regulation needs to be taken into consideration when targeting automation level.
- **Dedicated road/lane** where vehicles with defined automation level are allowed but the area is not confined, such as parking areas and dedicated lanes. Higher level of automation could be considered.
- Confined areas with restricted access control, such as terminal areas and ports. Full automation for autonomous vehicles could be considered.

Automated Freight Vehicle Development Paths

Truck: Freight vehicle > 3.5 tonnes categorie N2 or N3

Key Challenges on the Path to Higher Levels of Automated Driving

VOLVO GROUP TRUCKS TECHNOLOGY

Safe Connected Automated Driving AMAA Conference September 25

Volvo Group Trucks Technology Collaborative Research for Safe Automated Driving 23 2017-09-26

19-1101

