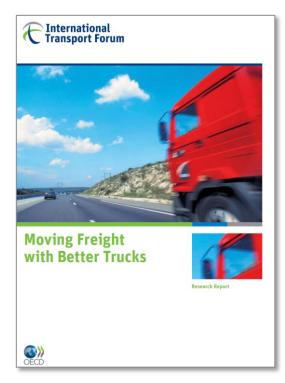


Strategy Development for Connected and Automated Road Transport

Dr. Tom Voege, Policy Analyst

International Transport Forum

AMAA 2017, Berlin, 25-26 September 2017



The International Transport Forum of the OECD

Think Tank

Annual **Summit**

Intergovernmental **Organisation**

Background and Introduction

- Vehicle automation a clear trend
- But varying experts opinions on:
 - Projected time scales
 - Technology options
 - Use cases/ services
- Necessary for policy makers to prepare their responses to this development
- Positive and negative are scenarios possible

Positive View on Vehicle Automation

- Many potential benefits of vehicle automation are being quoted:
 - Improved road safety levels
 - Decreased emissions
 - Increased network capacity
- Emergence of related mobility services also holds the promise for even larger benefits:
 - For society as a whole
 - On the city level

Negative View on Vehicle Automation

- But at the same time some negative effects could also be envisaged:
 - Network capacity gains leading to induced traffic
 - Ability of using travel time more productively leading to longer trips as people move further away from centres
 - This in turn then leads to further urban sprawl
 - Potentially huge fleets of empty vehicles running errands and generating much larger congestion levels
 - Wider labour market effects

Perspectives of Government vs. Industry

- Governments investing in R&D & demonstration of near market-ready systems, showcasing their ambitions for leadership in this space
- Emerging companies with much stronger IT focus in technical background and leadership mentality aggressively pushing into the market
- Vehicle automation thus part of the concepts of:
 - Sharing economy
 - Disrupting technologies

The Question of Government Intervention

- Policy makers to manage the transition period
- Lock-in benefits while avoiding potential risks
- Considerations for R&D funding and Piloting
- Key tools are legal and regulatory frameworks
- Regulation as a barrier to wider implementation
- Technology-led discussion overly optimistic
- Technology mature for many types of use cases
- Leadership from policy makers is essential

Regulatory Frameworks for Automated Vehicles

- Discussion about regulation in the context of AV typically centres on the vehicles
- Work is on-going on many levels here nationally and internationally:
 - Updates to the texts of the agreements under UNECE WP.29
 - Concepts of "driving tests" for automated vehicles
 - Test tracks simulating various real-life scenarios
 - Governments amending their legal frameworks in order to allow testing on public roads

Government Actions and Impact on Society

- Regulation will be necessary, as benefits are public goods not naturally protected by markets
 - Road safety improvements
 - Accessibility improvements
 - Reduced congestion levels
- Uncertainty around AV sees current AV regulation stretch existing frameworks
- Existing frameworks can only stretch so far, they will need to be updated shortly
- Key issue to resolve in the short term: how safe must an AV be to obtain approval for operation?

Regulatory Frameworks for Transport Services

- Regulating the automotive aspect of automated vehicles of course is key
- But likely implementation of this technology as enabler for shared mobility concepts
- Therefore regulation of mobility services needs to be considered in parallel
- Direct competition with legacy transport services,
 which are often heavily regulated and protected
- Automated trucks on motorways another key example with related regulatory schemes

Current Issues surrounding AV Regulation

- Disrupting effects of technologies and services are already very visible
 - In the case of Transportation Network Companies (TNCs) such as Uber, Lyft, Didi, BlaBlaCar, etc.
 - But also with functionalities of automated vehicles on public roads, e.g. the Tesla Autopilot
- This is because of increasing time gap between innovation and the related necessary regulatory responses

Big Data in Transport - A Way Forward?

- Policy makers under increasing pressure to strike a balance between administrative oversights and enabling innovation
- The advent of big data and its application to the transport sector can solve this dilemma through flexible data-led regulatory approaches
- Key policy objectives to cover here include:
 - Vehicle/ traffic safety
 - Personal security (driver)
 - Minimum mobility levels

Geographical, Societal, Cultural Factors

- Social, societal, and demographic factors
- Economic level and income distributions
- Car ownership levels and car culture
- Existing layout, size, and density of urban form
- Specific requirements for mega-cities
- New cities, green-field/ brown-field developments
- Current modal provision and share
- Cultural aspects relating to e.g.:
 - IT and technology literacy,
 - Perception of safety and trust,
 - Driver behaviour,
 - Environmental awareness,
 - Views on privacy, etc.

Potential Labour Market Effects

- Substantial labour impacts likely to arise as a result of advanced AV technology
- Substantial job losses amongst drivers, within a decade, job losses in the order of 1 million
- Unlike other circumstances, drivers displaced may struggle to find alternative employment
- Industry specific support consistent with good practice for general unemployment support
- To be funded by the main beneficiaries of the advanced AV technologies implemented

Thank you for your attention!

Contact Information

Dr. Tom VoegePolicy Analyst

International Transport Forum

Tel: +33 (0) 1 45 24 97 24 **Fax:** +33 (0) 1 45 24 13 22

tom.voege@itf-oecd.org

www.itf-oecd.org