

Vehicle Re-identification With Several Magnetic Sensors

PhD student: Anne-Cécile Pitton (CEA-Leti MINATEC) PhD advisors: Dr Sylvie Charbonnier (Gipsa-lab INPG-CNRS) Andréa Vassilev (CEA-Leti MINATEC)

AMAA 2012 – May 30-31 2012 – Berlin, Germany

- Introduction
- Material
- Re-identification methods
- Experimental results
 - Evaluation method
 - Performances
- Conclusion and Future work

Introduction

- Material
- Re-identification methods
- Experimental results
 - Evaluation method
 - Performances
- Conclusion and Future work

Introduction

- Traffic congestion
 - Economic and ecological inconveniences
- Vehicle re-identification
 - Travel Time estimation
 & Origin-Destination matrices
 - Current technological solutions

Introduction

- Magnetic sensor
 - Vehicles: metallic masses

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 5 © CEA. All rights reserved

Introduction

Re-identification with magnetic sensors

- Comparison of pairs of magnetic signatures
- Induced magnetization: problem?

Introduction – Objectives

Evaluate performances of re-identification methods

Effects of a change in vehicule orientation ?

Introduction

Material

- Re-identification methods
- Experimental results
 - Evaluation method
 - Performances
- Conclusion and Future work

Material

- Data collection A total of 261 signatures
 - 25 vehicles
 - 4 different orientations to the North
 - North to South (NS), SN, East to West (EW), WE
 - ~ 3 times in each traveling direction

Recording of a North to South (=NS) 3-axis magnetic signature

Material

- Magnetic sensor
 - By CEA-Leti from AMR Honeywell
 - Sampling rate 200Hz
- Data post-processing
 - From Volts to Tesla
 - <u>Temporal</u> signature segmentation

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 10 © CEA. All rights reserved

Material

- Data post-processing
 - From temporal to <u>spatial</u> signatures
 - Vehicle speed estimation

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 11 © CEA. All rights reserved

- Introduction
- Material
- **Re-identification methods**
- **Experimental results**
 - **Evaluation** method
 - Performances
- Conclusion and Future work

Detectors

leti

- Two classes: « same » & « different »
- Decision rules:

leti

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 14 © CEA. All rights reserved

Distances

Euclidean distances – <u>spatial</u> S1,S2

Three Mono-dimensional: X,Y,Z Three Bi-dimensional: XY,YZ,XZ A Three-dimensional: XYZ

Mono-dimensional:

$$distX = \frac{1}{lsign} \cdot \sum_{i=1}^{lsign} |Bx_1(i) - Bx_2(i)|$$

Bi-dimensional:

$$distXY = \frac{1}{lsign} \cdot \sum_{i=1}^{lsign} \sqrt{((Bx_1(i) - Bx_2(i))^2 + (By_1(i) - By_2(i))^2)}$$

Three-dimensional:

$$distXYZ = \frac{1}{lsign} \cdot \sum_{i=1}^{lsign} \sqrt{\left(\left(Bx_1(i) - Bx_2(i) \right)^2 + \left(By_1(i) - By_2(i) \right)^2 + \left(Bz_1(i) - Bz_2(i) \right)^2 \right)}$$

Distances

- Euclidean distances <u>spatial</u> S1,S2
- Two or four sensors:

- Introduction
- Material
- Re-identification methods
- Experimental results
 - Evaluation method
 - Performances
- Conclusion and Future work

Experimental results Evaluation methods

- Pairs of signatures (S1, S2): measured...
 - ... from the same vehicle, or not

eg. 66 NS signatures: 92 « same » pairs 2053 « different » pairs

... with the same traveling direction, or not

... same orientation: eg. SN / SN

... different orientations: eg. SN / EW

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 18 © CEA. All rights reserved

Experimental results Evaluation methods

- Detection curves: TD-PE curves
 - For each threshold Tdist:

• \rightarrow plotting TD-PE curves by varying the threshold Tdist

Experimental results Evaluation methods

- Detection curves example on NS/NS signatures
 - Euclidean distances

Vehicle Re-identification With Several Magnetic Sensors – Anne-Cécile Pitton | AMAA 2012 – Thursday, May 31 2012 | 20 © CEA. All rights reserved

- Introduction
- Material
- Re-identification methods

Experimental results

- Evaluation method
- Performances
- Conclusion and Future work

Parameters

- Effect of the number of sensors?
- Effect of a change in vehicle orientation?
 - \rightarrow Comparison: Results on pairs of signatures with ...

Effect of a change in the lateral position of the vehicle on the road?

Number of sensors?

Method	Number of sensors	Same orientation		
		TD	PE	
3D DTW	1	84%	1%	
3D Euclidean distance	2	90%	0%	
	4	100%	0%	

Change in direction?

Method	Number of sensors	Same orientation		Different orientations			
		TD	PE	TD	PE		
3D DTW	1	84%	1%	70%	5%		
3D Euclidean distance	2	90%	0%	80%	0%		
	4	100%	0%	90%	0%		

Effect of a change in the lateral position of the vehicle on the road?

Versus

Simulation: shift of 0.25m

S1

S2

■ → TD rate falls by about 60%

- Introduction
- Material
- Re-identification methods
- Experimental results
 - Evaluation method
 - Performances
- Conclusion and Future work

Conclusion and Future work

Vehicle:

- Permanent magnetization: dominant
- Comparison DTW / Euclidean distances:
 - Best results with 3D Euclidean distance
 - At least two sensors

Affected by variations in lateral position:

- Solved with sensors closer to each other?
- → Two new experiments:
 - Sensors 0.1m apart (March 2012)
 - Real traffic flow (June 2012)

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

Thanks for your attention anne-cecile.pitton@cea.fr

amongoe altornique camorgine altornatives

Annual Review cooperations 🗆 ab MEMS photonic multimedia 🗅 excellence students pilot first integrative

9

Save the date now! June 19-20, 2012 MINATEC - GRENOBLE - FRANCE

leti

- Detection curves example on NS signatures
 - Euclidean distances & DTW3D distance

