

Automotive Ethernet, Holistic Approach for a Next-generation In-vehicle Networking Standard

AMAA 2012

Steffen Müller NXP Semiconductors

Content

- Introducing NXP Semiconductors
- Why Automotive Ethernet?
- Domain Architectures Today and Tomorrow
- Standards for Automotive Ethernet
- Evolution towards Automotive Ethernet
- BroadR-Reach Ethernet Solution
- EMC Fast Ethernet vs. BroadR Reach
- Conclusion

Introducing NXP Semiconductors

NXP Semiconductors provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise

- Headquarters: Eindhoven, The Netherlands
- Employee base:
 - approximately 25,000 employees
 - in more than 25 countries
 - R&D in Europe, US, and Asia
 - Manufacturing in Asia and Europe: 85 % out of own production
- Net sales: \$4.2 B in 2011, over 60% in Asia Pacific
- Customers: Leading OEMs worldwide

NXP – Automotive Product Portfolio

Automotive Transceivers reach 3 Billion

11 years to the 1st billion...

11 quarters to the 2nd billion...

11 quarters to the 3rd billion....

... to the 4th billion in 2012

Milestone in September 2010 \rightarrow 3 billion transceivers shipped Every newly produced car has 8 NXP transceivers on board

Why Automotive Ethernet?

- Communication and bandwidth requirements increase more and more with more complex car applications, e.g. enhanced safety, entertainment
- Car networks like LIN, CAN, FlexRay are not specified to cover increasing demands for bandwidth and scalability
- Network solutions for higher bandwidth are available but expensive
- End users expect in the car same level of data availability as at home
- Future networking technology shall re-use as much as possible from nonautomotive while taking automotive-specific requirements into account

Today, car network architectures are of a heterogeneous and

historically grown nature

Domain Architecture, Today and in Future (1)

Domain Architecture, Today and in Future (2)

- Ethernet is good for backbone bus systems to connect application domains and sub-networks that require higher bandwidth
- Switched Ethernet networks rely on point-to-point comm. and bandwidth is more efficiently used than in broadcast systems (CAN, FlexRay)
- Ethernet is a paradigm shift in design of next-generation car networks to
 - Connect different application domain networks
 - Transport different kinds of data (control data, streaming, etc.)
 - Fulfil stringent robustness demands (Temp, EMC) across network protocols

Evolution towards Automotive Ethernet (1)

- One Pair EtherNet OPEN Alliance; over 50 partners, formed for physical layer
- Standardisation for components, tests based on Broadcom's BroadR-Reach tech.
- Gather requirements for future networks "Reduced Pair Gigabit"
- AUTOSAR addresses Automotive Ethernet in their software layer stack

Evolution towards Automotive Ethernet (2)

- Driver Assistance Systems include several cameras to allow surround view
- High-resolution cameras require high bandwidth (for uncompressed data) transfers
- Backbone architecture is hierarchically organized with domain controllers
- Different data communication classes coexist on the same network
- IP based routing concept eases addressing and allows scalability

BroadR-Reach Ethernet Solution

Steffen Müller - Automotive Ethernet, Holistic Approach for a Next-generation In-vehicle Networking Standard

EMC Fast Ethernet vs. BroadR Reach

Summary

- CAN and FlexRay remain for body and safety-critical communication
- Increasing bandwidth needed for driver assistance and infotainment
- Network topologies will change from decentralised domain-specific architectures to hierarchical architectures that need backbone
- Ethernet provides scalability and flexibility for next-generation networks
- New automotive optimised components required (Ethernet switches, PHY), promising steps taken with BroadR-Reach technology
- Further studies needed to validate the secure coexistence of different data communication classes on the same Ethernet network
- OPEN Alliance and AUTOSAR are driving further standardisation on the hardware and software levels

