AMAA 2012

Far Infrared Imaging Sensor for mass Production of Night Vision & Pedestrian Detection Systems

Silicon infrared imaging sensors

UNCLASSIFIED

Outline

- Automotive applications
- FIR imaging sensor
- Thermal imaging for automotive applications
- Non imaging applications
- Conclusion

UNCLASSIFIED

FIR imaging sensors for automotive applications

Far infrared (λ = 10 $\mu m)$ is well adapted to pedestrian detection because of:

- High contrast based on object thermal detection
- Completely passive imaging system

Two types of applications:

- Imaging applications
 - Enhanced Driver Vision (EDV)
 - Pedestrian Detection System (PDS)

- Short distance Detection applications
 - Front & Back viewer
 - · Occupancy detection

Crotine SOFPADIR

UNCLASSIFIED

Outline

- Automotive applications
- FIR imaging sensor
- Thermal imaging for automotive applications
- Non imaging application
- Conclusion

UNCLASSIFIED

Imaging application

Needs for a ¼ VGA imaging sensor currently tested by Tiers 1 and Equipment manufacturers

⇒ Development of a new detector 1/4 VGA / 17 μm pixel pitch

্ৰ

Outline

- Automotive applications
- FIR imaging sensor
- Thermal imaging for automotive
- Non imaging application
- Conclusion

UNCLASSIFIED

Non Imaging application with microbolometer

	Thermopile/ Pyroelectric	µbolometer	Comments
NETD	 0.15°C @1Hz, 100°C	++ 0.05°C @50Hz, 20°C	
Size / pixel pitch	 100 to 250 μm	++ 17 to 25 μm	
Frame rate		++	
Uniformity	+	+	Both require calibration process
Vacuum	- Chip Level Package	+ Pixel Level Package	Both require vacuum package
Operating range	+	++ -40°C to +85°C	Performance stability over the operating temperature
Manufacturability	+	+	

PIR detectors versus Microbolometer detectors Comparison

Groupe SOFRADI

UNCLASSIFIED

Conclusion

Key benefits of a-Si are extensive

a-Si physical properties

Thin microbridge architecture / fast sensor Enhanced thermal insulation / fast & sensitive sensor Easy downscaling for small pixel

a-Si thin film uniformity

a-Si is Compatible with silicon technology for advanced packaging techniques

Groupe SOFRADIR

UNCLASSIFIED

Conclusion

Key benefits of a-Si imaging sensor for automotive

- **a-Si** paves the way to very large volume applications required by automotive security enhancement like:
- ✓ Long distance pedestrian detection (DVE)
- ✓ Short distance pedestrian detection (small arrays)
- ✓ Blind spot detection
- ✓ HVAC management & seat occupancy

