Overall Probabilistic Framework for Modeling and Analysis of Intersection Situations

16th Int. Forum on Advanced Microsystems for Automotive Applications (AMAA 2012) "Smart Systems for Safe, Sustainable and Networked Vehicles" 30-31 May 2012, Berlin (Germany)

Dr. Galia Weidl and Dr. Gabi Breuel / Daimler R&D, Driver Assistance and Safety Systems

Motivation and Goals

Accidents Concentration on Intersections

Goals

- Recognition of behavior and intentions of all road users
- Risk assessment
- Driver assistance in critical situations

Cooperative Perception Architecture

Assessment of Risks

Digital map for situation analysis:

- localization
- context information
 - topography & topology
 - priority context:
 - traffic lights
 - traffic signs
 - lane attributes + relations
 - \rightarrow maneuver-tracks options

Probabilistic

track options

maneuver-

conflict areas

Objects (road users):

- position
- state of motion

Risk assessment in space-time:

- potential conflicts (Object pairs)
- occupation of conflict areas
- time-to-enter/disappear

Intersection: Possible Conflict-Tracks

Assumption: The road users are selecting maneuver-tracks, conform with the lanes of their localization.

Method to Resolve the Challenges

Suitable method for probabilistic reasoning?

- Many networking road users with a number of maneuver options ightarrow combinatorial issue
- Handling of uncertainties in sensor measurements, digital map, localization and perception algorithms, modeling

Appropriate method for knowledge representation

- Qualitative
 - Express all maneuver options of all road users
 - Mimic the human reasoning for situation analysis
- Quantitative
 - Parameterize the models with acquired data
- \rightarrow Bayesian Networks (BN)

Reduction of model complexity

- Model library of BN-fragments ightarrow reuse or modify in similar situation context

→Object-oriented Bayesian Networks (OOBN)

OOBN for Risk Assessment Between Networking Road Users

Knowledge Representation

- Qualitative (cognitive):
 - structure of the network
 - causality relations
- Quantitative (probabilistic):
 - strength of dependencies

References and Acknowledgments

"Feel-Safe Zone in Intersection Situations"

- a probabilistic algorithm estimating if "Space for maneuver" is available -

by E.Käfer, G.Weidl, V.Gomer, G.Breuel, C.Wöhler, H.Ritter

submitted to IEEE Intelligent Transportation Systems Transactions and Magazine

Acknowledgments

The work on "Cognitive Recognition of Maneuver Options and Risk Assessment" was partially supported by the project Ko-PER within the research initiative Ko-FAS funded by the German Bundesministerium für Wirtschaft und Technologie (Federal Department of Commerce and Technology) under grant number 19S9022.

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages